

1-	0
1/2"-13 UNC GND BOLT	
D BOL1	
2F B	
	1.6 0.7 0.7 1.7 0.7 1.7 0.7 0.7
T BA	
N-W	< MIN. ES
	U +0.000 U -0.001 D+0.00
	S +0.002 S -0.000
	70000 R +0.000

UNITS: INCHES

					\neg				
FRAME	SIZE	5010USS	5010US	5010UZ	FRAME	SIZE	5010USS	5010US	5010UZ
	A	24.8	24.8	24.8		Ш	10.00	10.00	10.00
	В	39.8	39.8	8.62	S	2	32.00	32.00	32.00
	С	64.9	66.3	71.7	MOUNTING	F	.00	.00	
	D	12.50	66.3 12.50 2.6 6.3 6.7	12.50	IG	Н	1.2	1.2	1.2
MOTOR	G	2.6	2.6	2.6		BA	8.50	8.50	8.50
MOTOR DIMENSIONS	J	6.3	6.3	6.3	SHAF	N-W	4.75	6.25	11.62
SNOISN	K	6.7	6.7	6.7	SHAFT EXTENSION	٧	4.50	6.19	11.38
	Μ	24.8	24.8	24.8	NSION	U	2.375	3.625	4.375
	0	26.2	26.2	26.2		R	2.021	3.134	3.817
	Ъ	12.50 2.6 6.3 6.7 24.8 26.2 29.5	24.8 26.2 29.5	39.8 71.7 12.50 2.6 6.3 6.7 24.8 26.2 29.5 5.1	KEY SEAT	S	0.625	0.875	1.000
	7	5.1	5.1	5.1	4	ES	3.00	5.00	10.00
	AA[NPT]	4.00	4.00	4.00 24.8 20.4 12.5		LS	1.2 8.50 4.75 4.50 2.375 2.021 0.625 3.00 6313C3 NU313C3	1.2 8.50 6.25 6.19 3.625 3.134 0.875 5.00 6320C3	1.2 8.50 11.62 11.38 4.375 3.817 1.000 10.00 NU324C3 6320C3
] AB	24.8	24.8	24.8	BEARINGS		C3 N		1 C3 6
CO	AC	4.00 24.8 20.4 12.5	4.00 24.8 20.4 12.5	20.4	SS	OS	U313C3	6320C3	320C3
CONDUIT	ΑE	12.5	12.5	12.5	MA	WE	8	4650	
BOX	AF	9.2	9.2	9.2	MUM	WEIGHT) lbs.	
	Ϋ́	15.2	9.2 15.2 10.2	15.2	_	_	_		
	X	10.2	10.2	10.2					
_	_	_	_	_					

NOTES:

- DIMENSION V REPRESENTS LENGTH
 OF STRAIGHT PART OF SHAFT
 MAIN CONDUIT BOX MAY BE ROTATED
- 3. KEY DIMENSIONS EQUAL S × S × 10.00 FOR UZ, S × S × 5.00 FOR US, AND S × S × 3.00 FOR USS
- (MOTOR SUPPLIED WITH KEY)
 MOTOR WEIGHT SHOWN IS MAXIMUM
- BI-DIRECTIONAL FAN. OPPOSITE ROTATION AVAILABLE ONLY BY CONNECTION CHANGE STANDARD 2 POLE PRODUCT USES UNI-DIRECTIONAL FAN. OPPOSITE ROTATION AVAILABLE ONLY BY FAN AND CONNECTION HORSEPOWER IN FRAME
 STANDARD 4-8 POLE PRODUCT USES
- CHANGE

FRAME SIZE: P.O. NO.: CUSTOMER:

.

MOTOR MODEL NO .:

VOLTAGE:

RPM(SYN.):

Hz:

TAG NO's.:

PRODUCT TYPE: TEFC EQP III 840 & 841

COMMENTS:

TOSHIBA INTERNATIONAL CORPORATION

TOTALLY—ENCLOSED FAN—COOLED HORIZONTAL FOOT-MOUNTED 3 PHASE INDUCTION MOTOR ASSEMBLY

DO NOT USE FOR CONSTRUCTION, INSTALLATION, OR APPLICATION PURPOSES UNLESS THE DRAWING IS MARKED AS CERTIFIED TOSHIBA RESERVES THE RIGHT TO MAKE CHANGES OF TECHNICAL IMPROVEMENT AND THE DATA MAY CHANGE WITHOUT NOTICE

PER:

DATE:

BEARING RTD's SPACE HEATER RTD AUX. BOX STANDARD (NO AUX. BOX AUX. BOXES)

VISIT OUR WEBSITE AT: www.toshiba.com/ind

M
/j/j/
/ i /i/
ØM.

×

CERTIFIED PRELIMINARY

MDSL0031-22 R01

Issued Date	9/24/2019	Transmit #	
Issued By	dschoeck	Issued Rev	

TYPICAL MOTOR PERFORMANCE DATA

Model: B3003FLG8BMHD

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
300	224	2	3580	5010USS	460	60	3	322
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEFC	56	F	1.15	CONT	95.8	В	G	40 C

Load	HP	kW	Amperes	Efficiency (%)	Power Factor (%)
Full Load	300	223.7	322.0	95.9	90.2
¾ Load	225.00	167.8	245.8	96.0	89.5
½ Load	150.00	111.9	173.6	95.4	86.0
1/4 Load	75.00	55.9	108.7	88.1	73.3
No Load			62.0		15.1
Locked Rotor			2200		21.7

	Torque						
Full Load	Locked Rotor	Pull Up	Break Down	Inertia			
(lb-ft)	(% FLT)	(% FLT)	(% FLT)	(lb-ft²)			
440	145	145	255	117.40			

Safe Stall	Time(s)	Sound Bearings* Approx. Motor		Rearings*		
Cold	Hot	Pressure dB(A) @ 1M	DE	Approx. Motor Weight (lbs)		
74	93	-	6313C3	NDE NU313C3	3954	

*Bearings are the only recommended spare part(s).

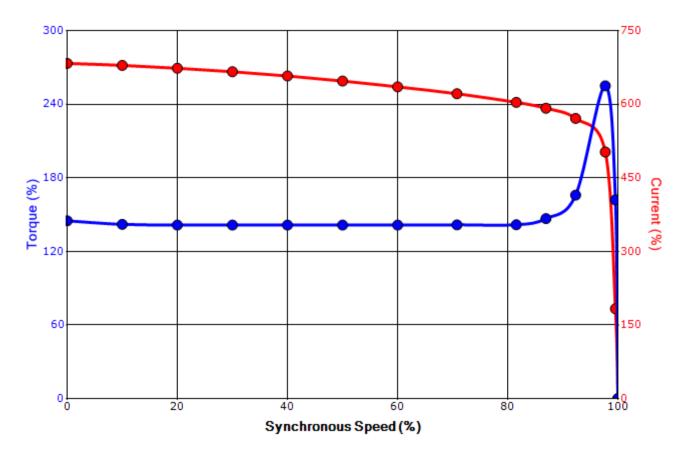
Motor Options: Product Family:EQP Global 840 Mounting:Footed,Shaft:USS Shaft

Customer	
Customer PO	Ì
Sales Order	Ì
Project #	Ì

Tag:

All characteristics are average expected values.

	TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.							
Engineering	amills	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1119 / 1			
Engr. Date	2/14/2012	Doc. Approved By	M. Campbell	Doc. Issued	9/20/2019			


Issued Date	9/24/2019	Transmit #	
Issued By	dschoeck	Issued Rev	

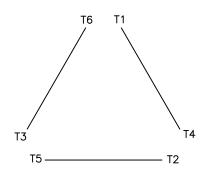
SPEED TORQUE/CURRENT CURVE

Model: B3003FLG8BMHD

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
300	224	2	3580	5010USS	460	60	3	322
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEFC	56	F	1.15	CONT	95.8	В	G	40 C
Laskad Datas	Rotor wk²	_			Torque			
Locked Rotor Inertia		Full Load	Locked Rotor		Pull Up		Break Down	
Allips	(lb-ft²)	(lb-ft)	(%)		(%)		(%)	
2200	117.40	440	145		145		255	

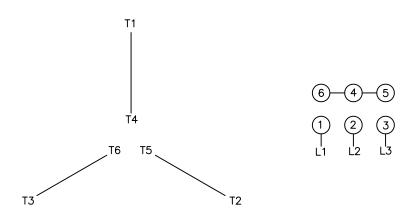
Design Values

Customer	wk² Load Inertia (lb-	
Customer PO	Load Ty	oe -
Sales Order	Voltage (/6) 100
Project #	Accel. Tir	re -


Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.						
Engineering	amills	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1121/1	
Engr. Date	2/14/2012	Doc. Approved By	M. Campbell	Doc. Issued	9/20/2019	


Motor Connection Diagrams 6 Leads

Across the Line Starting / Run - Delta:

Alternate Starting Connection - Wye:

Switch L1 and L2 to reverse rotation