

1-	0
1/2"-13 UNC GND BOLT	
D BOL1	
2F B	
	1.6 0.7 0.7 1.7 0.7 1.7 0.7 0.7
T BA	
 	< MIN. ES
	U +0.000 U -0.001 D+0.00
	S +0.002 S -0.000
	70000 R +0.000

UNITS: INCHES

1									
5010117	5010US	5010USS	SIZE	FRAME	5010UZ	5010US	5010USS	SIZE	FRAME
10.00	10.00	10.00	Ш		24.8	24.8	24.8	Α	
32.00	32.00	32.00	2	Ň	39.8	39.8	39.8	В	
	00		F	MOUNTING	71.7	66.3	64.9	С	
1.2	1.2	1.2	I	G	12.50	66.3 12.50 2.6 6.3 6.7	64.9 12.50 2.6 6.3 6.7	D	
8.50	8.50	8.50	BA		2.6	2.6	2.6	G	MOTOR
11.62	6.25	4.75	N-W	SHAF	6.3	6.3	6.3	ل	MOTOR DIMENSIONS
11.38	6.19	4.50	٧	SHAFT EXTENSION	6.7	6.7	6.7	ス	SNOISN
4.375	3.625	2.375	U	NOISN	24.8	24.8	24.8	×	
3.817	3.134	2.021	R	_	26.2	26.2	26.2	0	
1.000	0.875	0.625	S	KEY SEAT	39.8 71.7 12.50 2.6 6.3 6.7 24.8 26.2 29.5 5.1	24.8 26.2 29.5	24.8 26.2 29.5 5.1	Р	
10.00	5.00	3.00	ES	T	5.1	5.1	5.1	Т	
1.2 8.50 11.62 11.38 4.375 3.817 1.000 10.00 NU324C3 6320C3	1.2 8.50 6.25 6.19 3.625 3.134 0.875 5.00 6320C3	8.50 4.75 4.50 2.375 2.021 0.625 3.00 6313C3 NU313C3	LS	В	4.00 24.8 20.4 12.5	4.00 24.8 20.4 12.5	4.00 24.8 20.4 12.5	AA[NPT]	
C3 6)3 E	3 N		BEARINGS	24.8	24.8	24.8	AΒ	
320C3	6320C3	J313C3	SO	SS	20.4	20.4	20.4	AB AC	CON
	4650		WE	MAX	12.5			ΑE	CONDUIT
	lbs.		WEIGHT	MUM	9.2	9.2	9.2	ΑF	вох
					15.2	9.2 15.2 10.2	15.2	ΧL	
					10.2	10.2	10.2	X	
					 _	_	_	_	_

NOTES:

- DIMENSION V REPRESENTS LENGTH
 OF STRAIGHT PART OF SHAFT
 MAIN CONDUIT BOX MAY BE ROTATED
- 3. KEY DIMENSIONS EQUAL S × S × 10.00 FOR UZ, S × S × 5.00 FOR US, AND S × S × 3.00 FOR USS
- (MOTOR SUPPLIED WITH KEY)
 MOTOR WEIGHT SHOWN IS MAXIMUM
- HORSEPOWER IN FRAME
 STANDARD 4-8 POLE PRODUCT USES
- BI-DIRECTIONAL FAN. OPPOSITE ROTATION AVAILABLE ONLY BY CONNECTION CHANGE STANDARD 2 POLE PRODUCT USES UNI-DIRECTIONAL FAN. OPPOSITE ROTATION AVAILABLE ONLY BY FAN AND CONNECTION CHANGE

FRAME SIZE: P.O. NO.: CUSTOMER:

.

MOTOR MODEL NO .:

VOLTAGE:

RPM(SYN.):

Hz:

TAG NO's.:

PRODUCT TYPE: TEFC EQP III 840 & 841

COMMENTS:

TOSHIBA INTERNATIONAL CORPORATION

TOTALLY—ENCLOSED FAN—COOLED HORIZONTAL FOOT-MOUNTED 3 PHASE INDUCTION MOTOR ASSEMBLY

DO NOT USE FOR CONSTRUCTION, INSTALLATION, OR APPLICATION PURPOSES UNLESS THE DRAWING IS MARKED AS CERTIFIED TOSHIBA RESERVES THE RIGHT TO MAKE CHANGES OF TECHNICAL IMPROVEMENT AND THE DATA MAY CHANGE WITHOUT NOTICE

PER:

DATE:

BEARING RTD's SPACE HEATER RTD AUX. BOX STANDARD (NO

AUX. BOX

AUX. BOXES)

×

CERTIFIED PRELIMINARY

VISIT OUR WEBSITE AT: www.toshiba.com/ind

×
rm.
/i/i/
ØM.

MDSL0031-22 R01

Issued Date	3/19/2021	Transmit #	
Issued By	dschoeck	Issued Rev	

TYPICAL MOTOR PERFORMANCE DATA

Model: B3006FLF4BMHD

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
300	224	6	1185	5010UZ	460	60	3	362.00
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEFC	54	F	1.15	CONT	96.2	В	G	40 C

Load	HP	kW	Amperes	Efficiency (%)	Power Factor (%)
Full Load	300	223.7	362.0	96.1	80.6
¾ Load	225.00	167.8	287.4	96.0	76.9
½ Load	150.00	111.9	220.8	95.9	68.5
¼ Load	75.00	55.9	149.2	89.9	52.3
No Load			134.0		
Locked Rotor			2200		24.4

	Torque	9		Rotor wk²
Full Load	Break Down	Inertia		
(lb-ft)	(% FLT)	(% FLT)	(% FLT)	(lb-ft²)
1330	160	150	210	184.58

Safe Stall	Time(s)	Sound Bearings* Approx. Motor V		Rearings*	
Cold	Hot	Pressure dB(A) @ 1M	DE	NDE	(lbs)
28.31	8.1	-	NU324C3	6320C3	3967

*Bearings are the only recommended spare part(s).

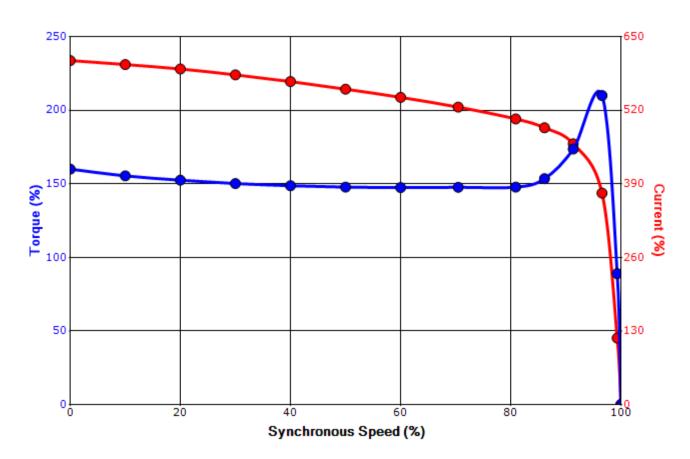
Motor Options: Product Family:EQP Global 840 Mounting:Footed,Shaft:UZ Shaft

Customer	
Customer PO	
Sales Order	
Project #	

Tag:

All characteristics are average expected values.

	gp								
TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.									
Engineering	amills	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1119 / 1				
Engr. Date	2/10/2012	Doc. Approved By	M. Campbell	Doc. Issued	9/20/2019				


Issued Date	3/19/2021	Transmit #	
Issued By	dschoeck	Issued Rev	

SPEED TORQUE/CURRENT CURVE

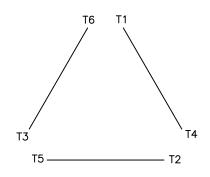
Model: B3006FLF4BMHD

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
300	224	6	1185	5010UZ	460	60	3	362.00
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEFC	54	F	1.15	CONT	96.2	В	G	40 C
Laskad Datas	Rotor wk²	_			Torque			
Locked Rotor Amps	Inertia	Full Load	Locked Rotor		Pull Up		Break Down	
	(lb-ft²)	(lb-ft)	(%)		(%)		(%)	
2200	184.58	1330	160		150		210	

Design Values

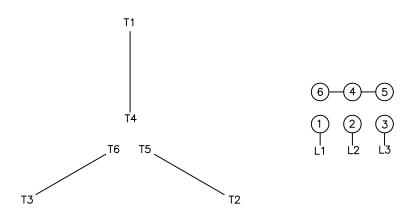
Torque	Current
--------	---------

Customer	wk² Load Inertia	ı (lb-ft²)
Customer PO	Loa	d Type -
Sales Order	Volt	age (%) 100
Project #	Acc	el. Time -


Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.							
Engineering	amills	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1121/1		
Engr. Date	2/10/2012	Doc. Approved By	M. Campbell	Doc. Issued	9/20/2019		


Motor Connection Diagrams 6 Leads

Across the Line Starting / Run - Delta:

Alternate Starting Connection - Wye:

Switch L1 and L2 to reverse rotation

Issued Date	Issued Date 3/19/2021		
Issued By	dschoeck	Issued Rev	

SPARE PARTS LIST*

Model: B3006FLF4BMHD

HP	kW	Pole	FL RPM	Frame	Voltage	Hz	Phase	FL Amps
300	224	6	1185	5010UZ	460	60	3	362.00
Enclosure	IP	Ins. Class	S.F.	Duty	NEMA Nom. Eff.	NEMA Design	kVA Code	Ambient (°C)
TEFC	54	F	1.15	CONT	96.2	В	G	40 C

 Bearings DE
 NU324C3 / 120RU03J3OX

 Bearings NDE
 6320C3 / 100BC03J3OX

*Bearings are the only recommended spare part(s).

Other than the grease used for regreasable bearings and the oil used for oil-lubricated bearings, Toshiba advises that there are no "use" parts. The only insurance spares that Toshiba suggests for these squirrel-cage induction motors are industry-standard and commercially available off-the-shelf bearings as noted above.

Motor components such as terminal boxes, fan covers and other machined parts are available on special request. In these cases, please advise our order entry department of the model and serial numbers found on the motor nameplate and a description of the needed components. With this information they will be able to furnish the current part number, price and availability.

Note: Our internal part numbers are subject to change without notice and are not published.

Customer	
Customer PO	
Sales Order	
Project #	

Tag:

All characteristics are average expected values.

TOSHIBA INTERNATIONAL CORPORATION · HOUSTON, TEXAS U.S.A.						
Engineering	amills	Doc. Written By	D. Suarez	Doc.# / Rev	MPCF-1125 / 1	
Engr. Date	2/10/2012	Doc. Approved By	M. Campbell	Doc. Issued	9/20/2019	