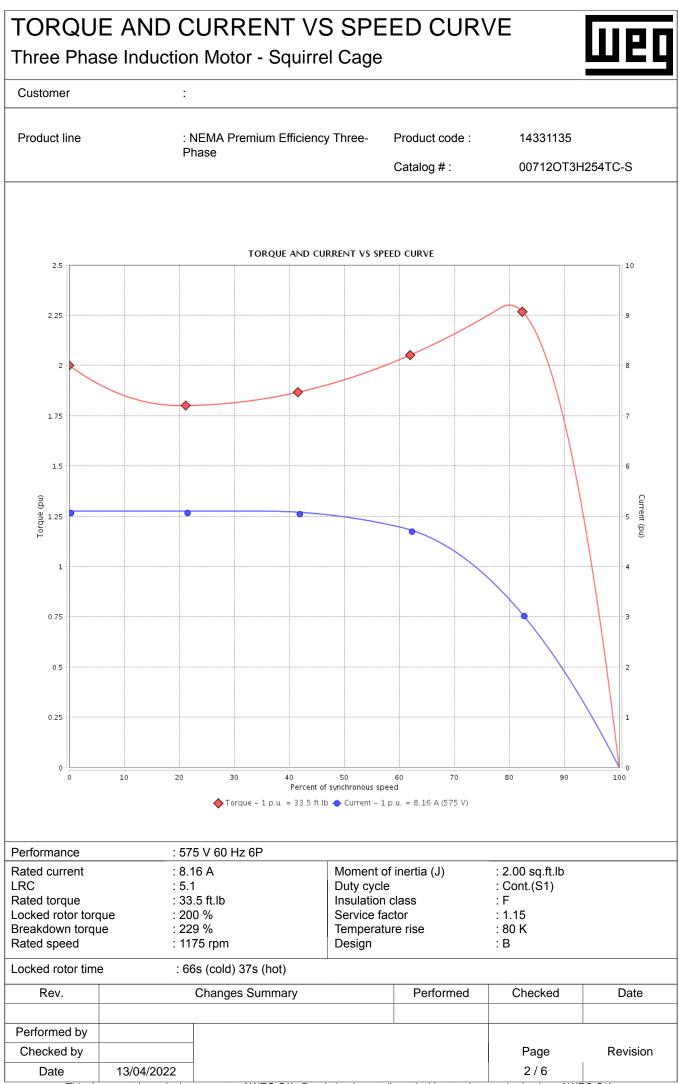
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

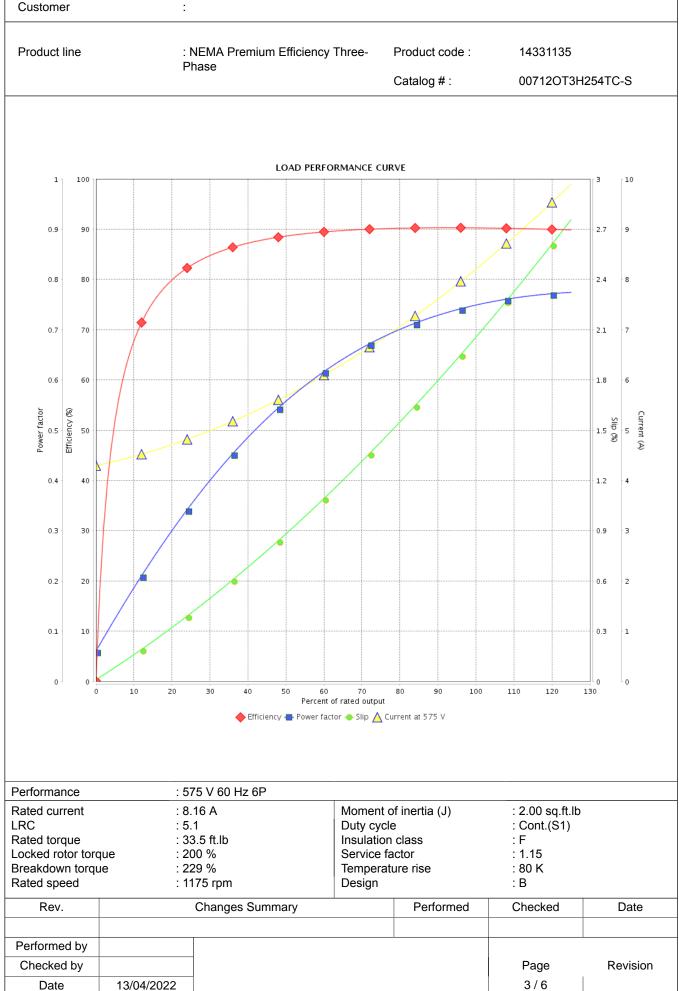


Product line		Phase		m Efficiency T		oduct code :	14331135	
					Ca	atalog # :	00712OT3H	1254TC-S
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor tord Breakdown torqu Insulation class Service factor Moment of inerti	ue	: 6 : 60 F : 575 : 8.16 : 41.6 : 5.1x : 4.29 : 117 : 2.08 : 33.5 : 200 : 229 : F : 1.15 : 2.00	HP (5.5 kV Hz V 3 A 3 A 4 (Code F) 4 A 5 rpm 3 % 5 ft.lb % %	V)	Locked ro Temperation Duty cycle Ambient to Altitude Cooling m Mounting Rotation ¹ Noise leve Starting m Approx. w	ure rise emperature nethod el ² nethod	: 66s (cold) : 80 K : Cont.(S1) : -20°C to + : 1000 m.a : IC01 - OE : F-1 : Both (CW : 59.0 dB(A : Direct On : 187 lb	-40°C .s.l.)P and CCW)
Design		: B						
Dutput	25%	50%	75%	100%	Foundation		6 -6 1	
Efficiency (%) Power Factor	88.2 0.33	88.5 0.56	90.2 0.68	90.2 0.75	Max. tractio Max. compr		: 276 lb : 463 lb	
Lubrication inter		:	20	Bearing Seal 0000 h	v	Vithout Bearing 20000 h	Seal	
Lubrication inter Lubricant amour Lubricant type			20	0000 h 13 g	bil Polyrex EN	20000 h 8 g	Seal	
Sealing Lubrication inter Lubricant amour Lubricant type Notes This revision repl must be eliminate (1) Looking the m (2) Measured at (3) Approximate m anufacturing pr (4) At 100% of fu	laces and o ed. notor from 1m and wit weight sub ocess.	the shaft e	previous c end. e of +3dB(0000 h 13 g Mol	bil Polyrex EN	20000 h 8 g M average values	based on tests wi e tolerances stipu	
Lubrication inter Lubricant amour Lubricant type Notes This revision repl nust be eliminate 1) Looking the m 2) Measured at 3) Approximate nanufacturing pr	laces and o ed. notor from 1m and wit weight sub ocess.	the shaft e th toleranc ject to cha	previous c end. e of +3dB(0000 h 13 g Mol	bil Polyrex EN	20000 h 8 g M average values	based on tests wi	
Lubrication inter Lubricant amour Lubricant type Notes This revision repl nust be eliminate 1) Looking the m 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu	laces and o ed. notor from 1m and wit weight sub ocess.	the shaft e th toleranc ject to cha	20 previous c end. e of +3dB(nges after	0000 h 13 g Mol	bil Polyrex EN	20000 h 8 g M average values	based on tests wi	lated in NEMA

Шeq

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

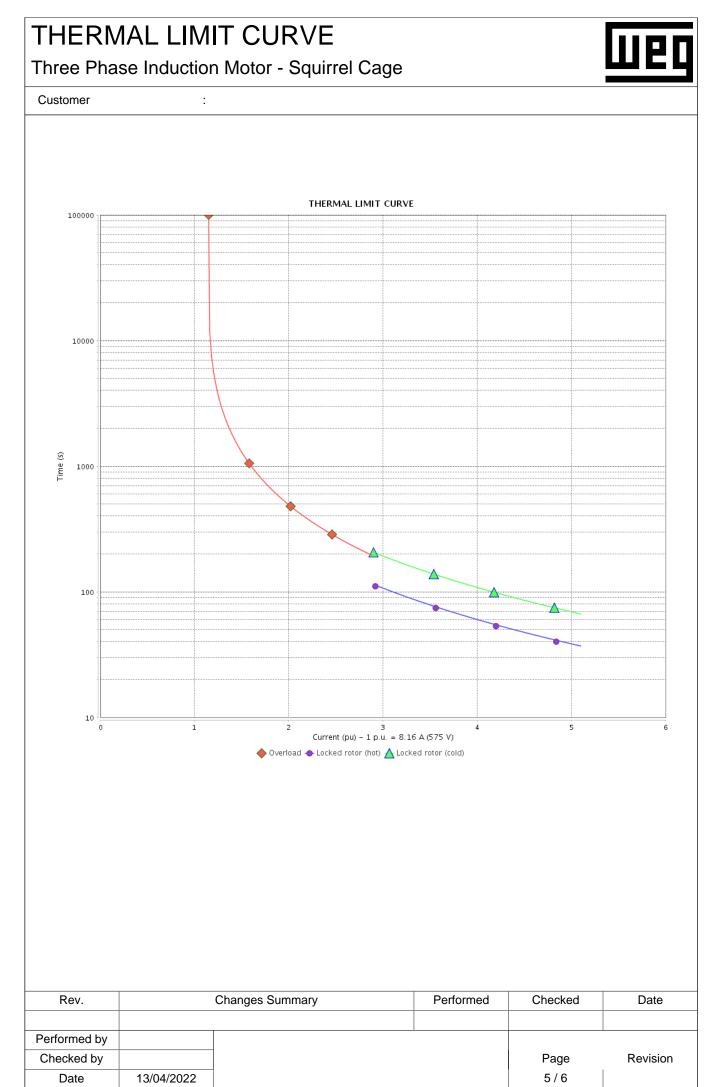

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice

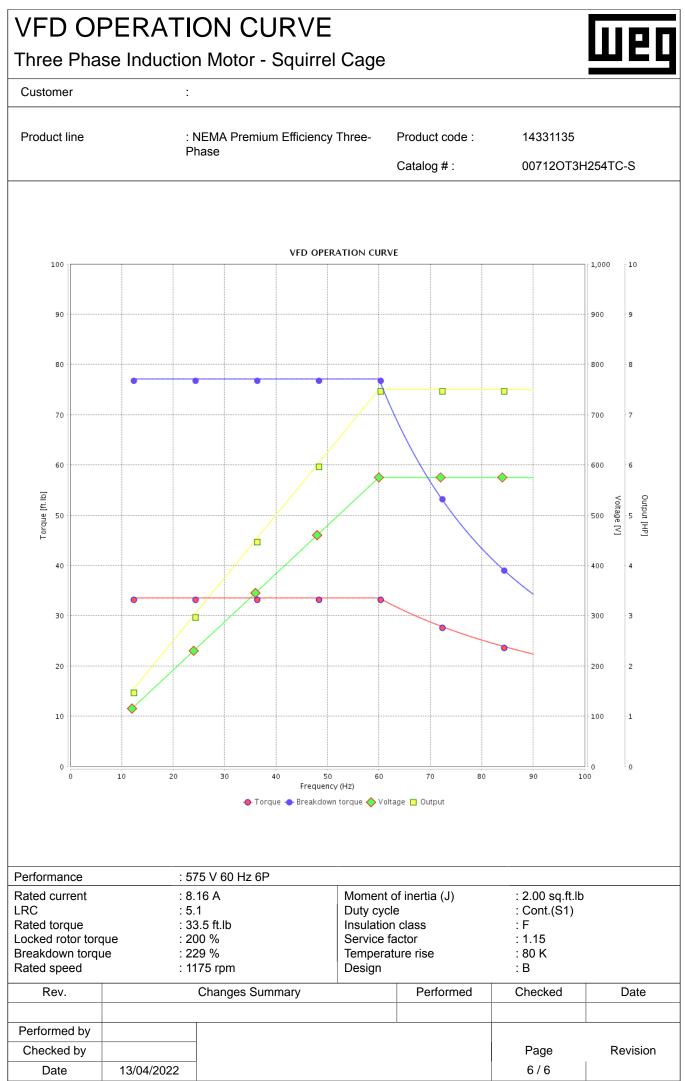
LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

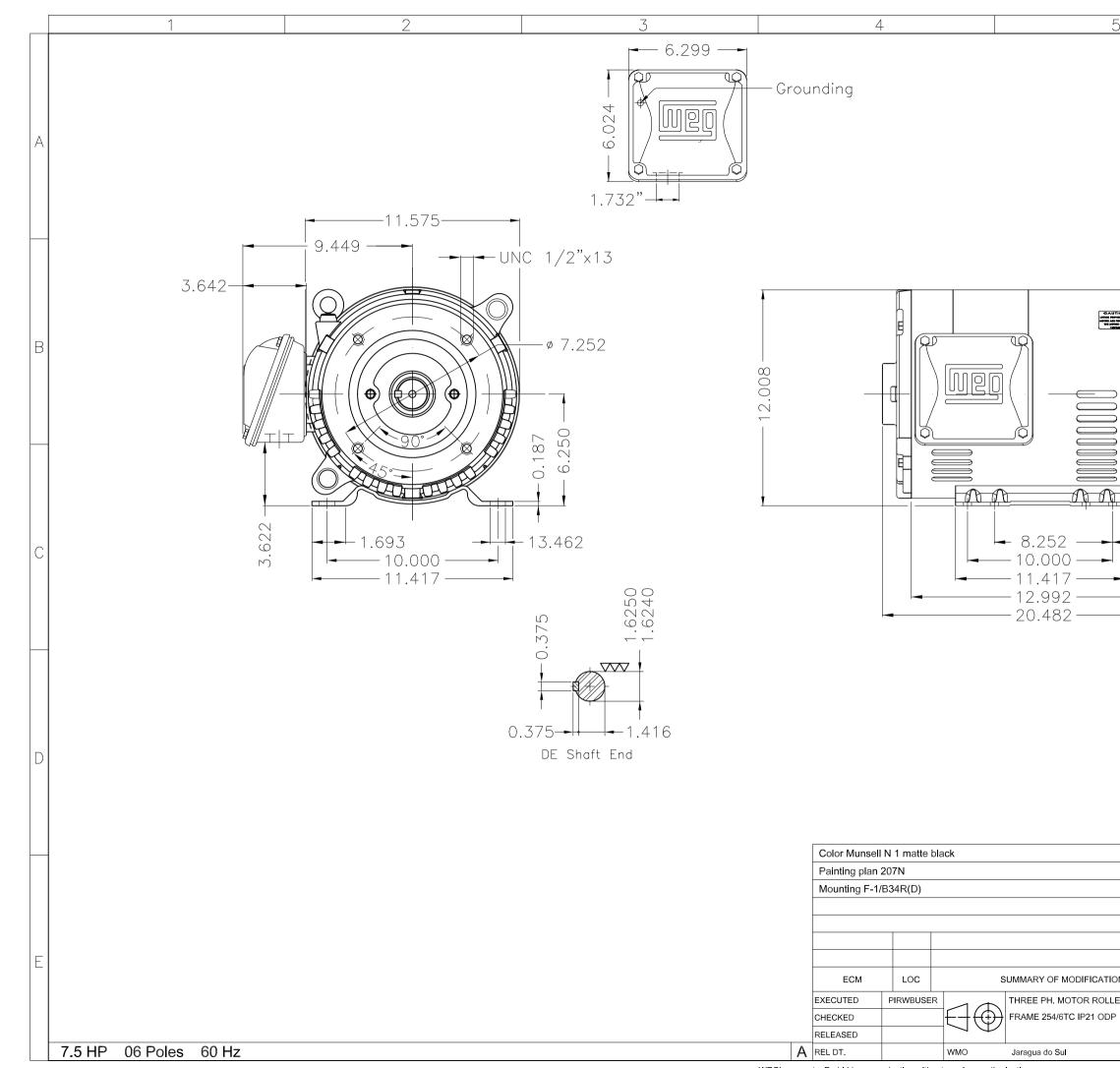
Customer


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice


THERMAL LIMIT CURVE Three Phase Induction Motor - Squirrel Cage						
Customer	:					
Product line	: NEMA Premium Efficiency T Phase	hree- Product code : Catalog # :	14331135 00712OT3H254TC-S			
Performance	: 575 V 60 Hz 6P					
Rated current LRC Rated torque Locked rotor torq Breakdown torqu		Moment of inertia (J) Duty cycle Insulation class Service factor Temperature rise	: 2.00 sq.ft.lb : Cont.(S1) : F : 1.15 : 80 K	: Cont.(S1) : F		
Rated speed	: 1175 rpm	Design	: B			
Heating constant Cooling constant						
Rev.	Changes Summary	Performed	Checked Date			

1.01.		enangee eannary	renemiea	eneekea	Bate
Performed by					
Checked by				Page	Revision
Date	13/04/2022			4 / 6	


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

WEG's property. Forbidden reproduction without previous authorization.

5			6		
		- 3.750 - 2.756	8.500	8.858	
		_	Ø 00 00	00 00 00	
4.750	- 0.25	 0 4.000			
		-			
					Dimensions in inches
IONS	EXECUTED	CHECKED	RELEASED	DATE	VER
LED STEEL PREM. E	FF.	PREVI	EW	Ше	A3
Droduc		WDD Sheet	1 / 1	шС	XME
Produc	t Engineering		1 / 1		×