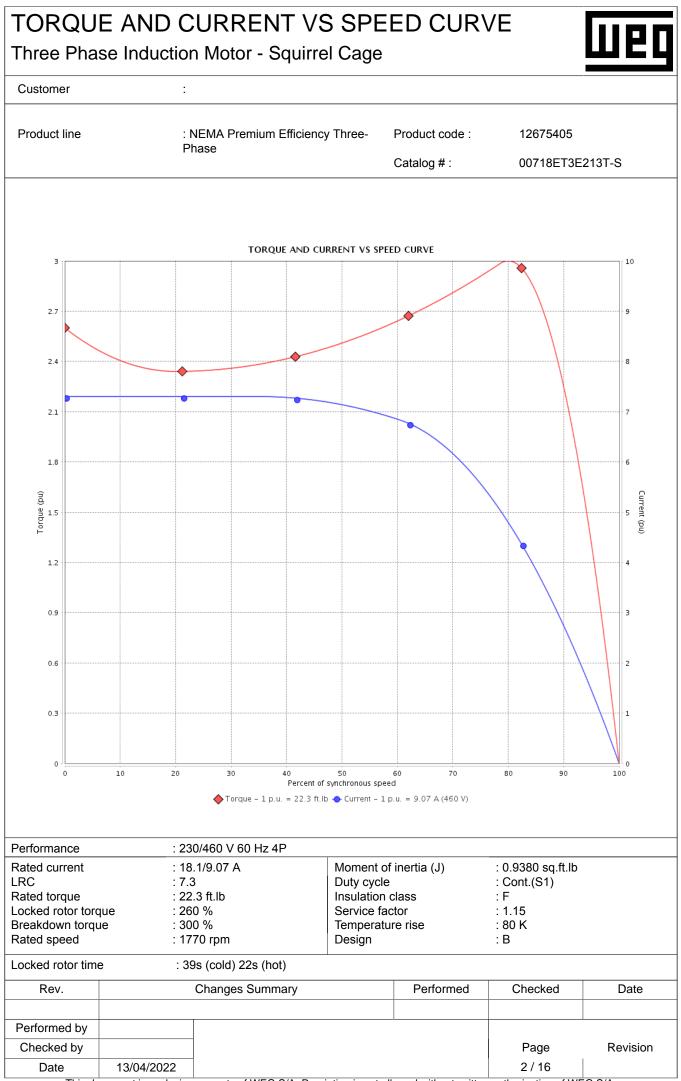
DATA SHEET


Three Phase Induction Motor - Squirrel Cage

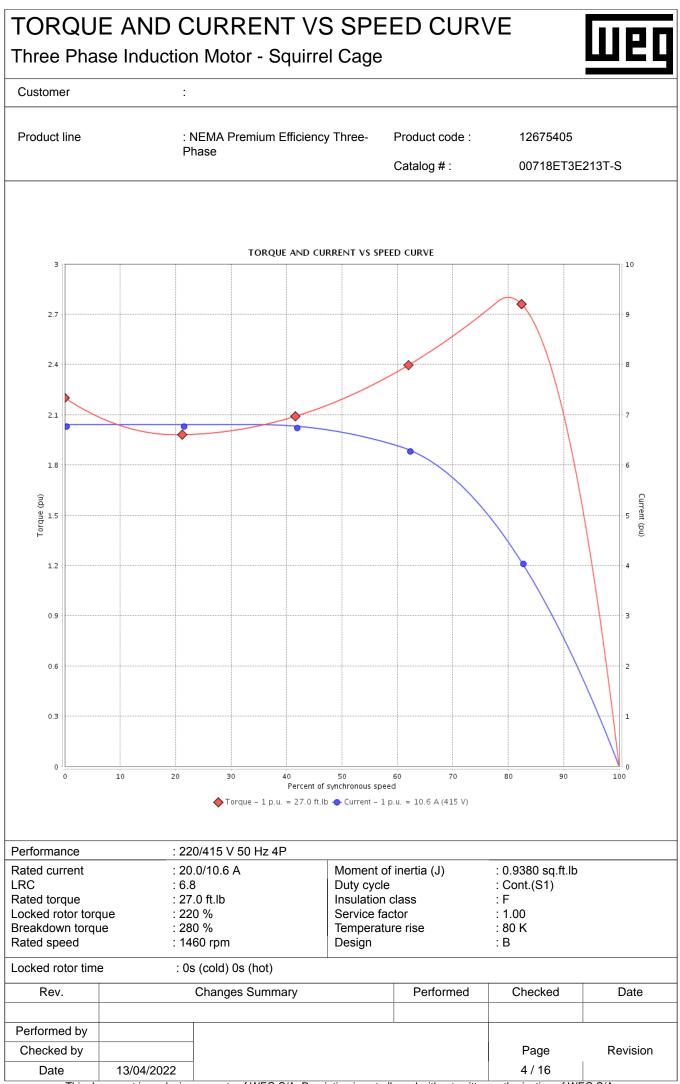
:

Customer

Product line		: NEMA Premium Efficiency	Three- Product code :	12675405
		Phase	Catalog # :	00718ET3E213T-S
Frame		: 213/5T	Cooling method	: IC411 - TEFC
Insulation class		: F	Mounting	: F-1
Duty cycle		: Cont.(S1)	Rotation ¹	: Both (CW and CCW)
Ambient tempera	ature	: -20°C to +40°C	Starting method	: Direct On Line
Altitude		: 1000 m.a.s.l.	Approx. weight ³	: 120 lb
Protection degree Design		: IP55 : B	Moment of inertia (J)	: 0.9380 sq.ft.lb
Output [HP]		7.5	7.5	7.5
Poles		4	4	4
Frequency [Hz]		60	50	50
Rated voltage [V]		230/460	190/380	220/415
Rated current [A]		18.1/9.07	22.0/11.0	20.0/10.6
. R. Amperes [A]		132/66.2	136/68.2	136/72.1
RC [A]		7.3x(Code H)	6.2x(Code G)	6.8x(Code H)
lo load current [A]	8.81/4.41	8.65/4.33	8.93/4.73
ated speed [RPN		1770	1455	1460
Slip [%]	-	1.67	3.00	2.67
Rated torque [ft.lb]	1	22.3	27.1	27.0
ocked rotor torqu		260	190	220
Breakdown torque		300	250	280
Service factor	r,.1	1.15	1.00	1.00
Temperature rise		80 K	105 K	80 K
_ocked rotor time		39s (cold) 22s (hot)	Os (cold) Os (hot)	Os (cold) Os (hot)
		60.0 dB(A)	57.0 dB(A)	57.0 dB(A)
	25%	89.4	91.3	90.4
Efficiency (%)	50%	90.2	90.2	89.8
J (-)	75%	91.0	90.0	90.1
	100%	91.7	88.6	89.2
	25%	0.39	0.45	0.41
Power Factor	50%	0.64	0.71	0.67
	75%	0.76	0.82	0.79
	100%	0.82	0.86	0.84
Bearing type		<u>Drive end</u> <u>Non drive end</u> : 6208 ZZ 6206 ZZ	 Foundation loads Max. traction 	: 366 lb
Sealing		: V'Ring Without Bearing Sea	Max. compression	: 486 lb
Lubrication interv	/al	:		
Lubricant amoun		:		
Lubricant type		: Mobil Polyrex EM		
Notes USABLE @208V	20.1A SF 1.	00 SFA 20.1A		
	ed.	cel the previous one, which	•	based on tests with sinusoidal ne tolerances stipulated in NEMA
	Im and with t weight subjec ocess.	olerance of +3dB(A). t to changes after		
 Looking the m Measured at 1 Approximate v manufacturing pro 	Im and with t weight subjec ocess.		Performed	Checked Date
(1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev.	Im and with t weight subjec ocess.	t to changes after	Performed	Checked Date
 (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev. Performed by 	Im and with t weight subjec ocess.	t to changes after	Performed	
(1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of ful Rev.	Im and with t weight subjec ocess.	Changes Summary	Performed	Checked Date Page Revision

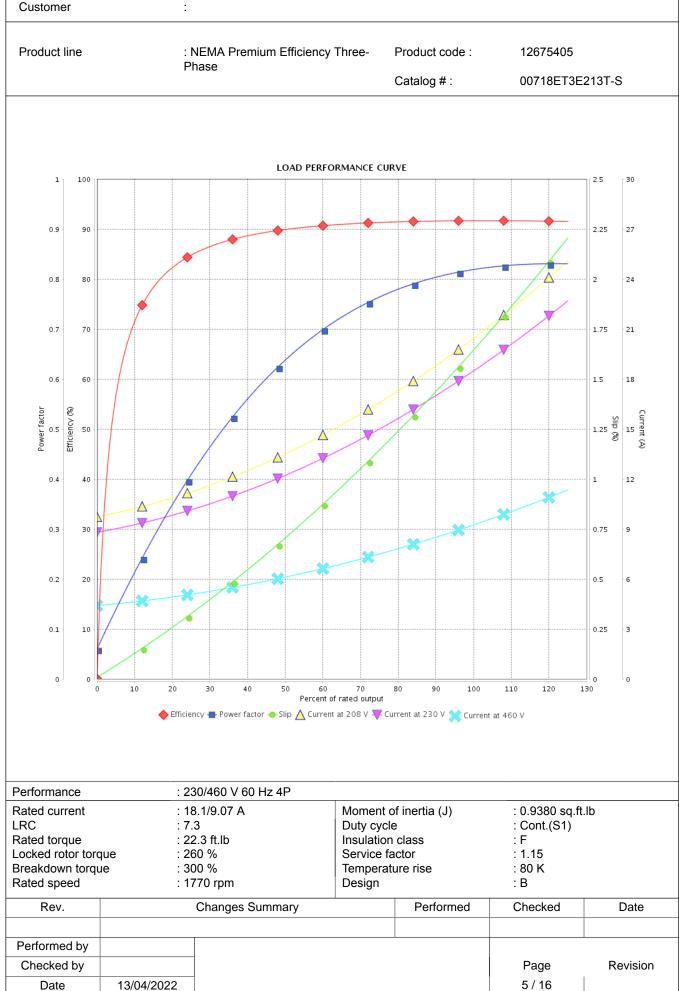
TORQUE AND CURRENT VS SPEED CURVE

Three Phase Induction Motor - Squirrel Cage


:

Customer

Product line		: NEMA Premium Efficiency [·] Phase	Three-	Product code :	12675405		
		F11050		Catalog # : 00718		ET3E213T-S	
		TORQUE AND CURF	RENT VS SPE	ED CURVE			
3						10	
2.7						9	
2.4						8	
2.1						7	
					\backslash		
1.8						6	
3						2	
(nd) an 1.5 D						Current (pu)	
Tor					$\langle \rangle$	(pu	
1.2						4	
					X		
0.9							
0.6					\		
0.3							
0.5							
0	10	20 30 40 Percent of sy	50 nchronous spee	60 70	80 90	100	
		• • Torque – 1 p.u. = 27.1 ft.lb •					
erformance		: 190/380 V 50 Hz 4P	Marray	lineatic (1)	. 0.0000		
ated current RC		: 6.2	Duty cycle		: 0.9380 sq.ft.lb : Cont.(S1)		
ated torque			Insulation Service fa		: F : 1.00		
reakdown toro	lue	: 250 %	Temperatu		: 105 K		
ated speed			Design		: B		
ocked rotor tin	ne	: 0s (cold) 0s (hot)		Dorfoursed	Charlest	Dete	
Rev.		Changes Summary		Performed	Checked	Date	
Performed by							
Checked by					Page	Revision	
Date	13/04/2022	2			3 / 16		

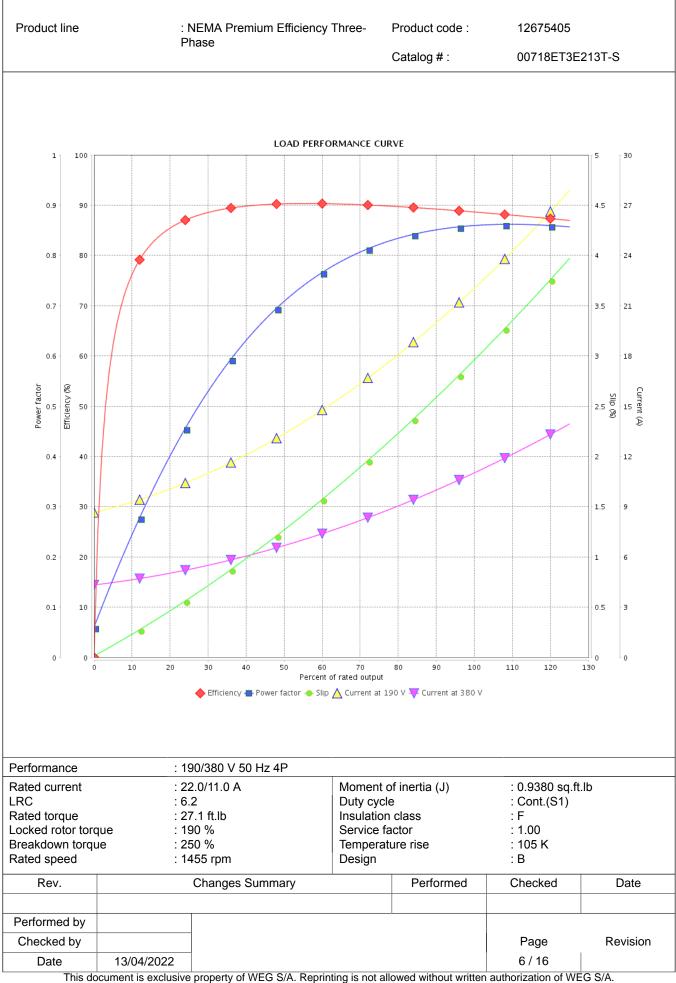

This document is exclusive property of WE Subject to change without notice

LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

Customer

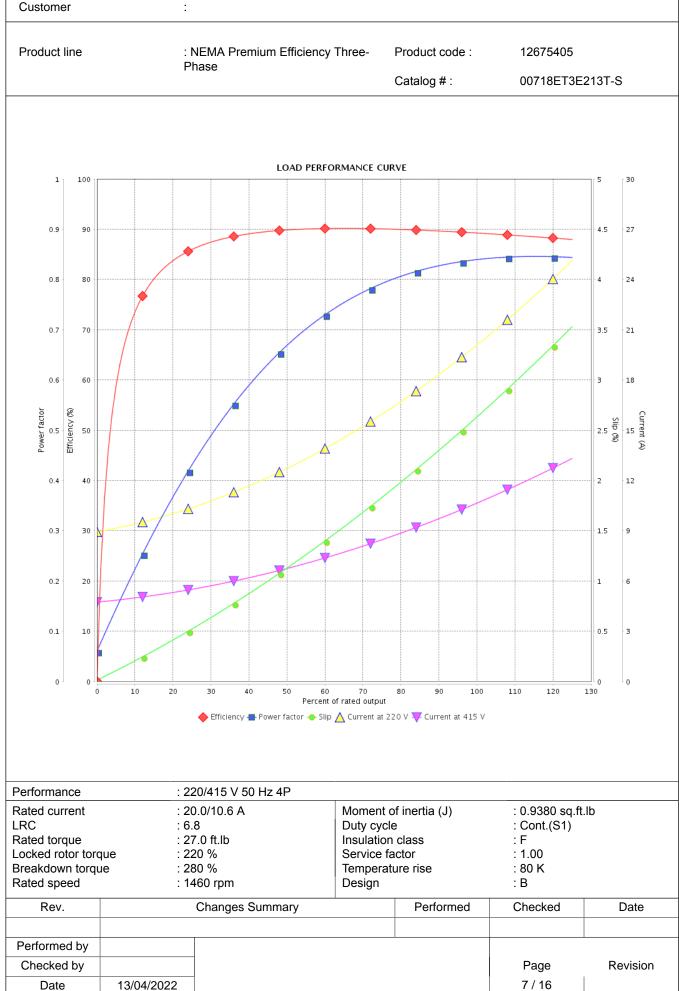
This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.


LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

:

Customer

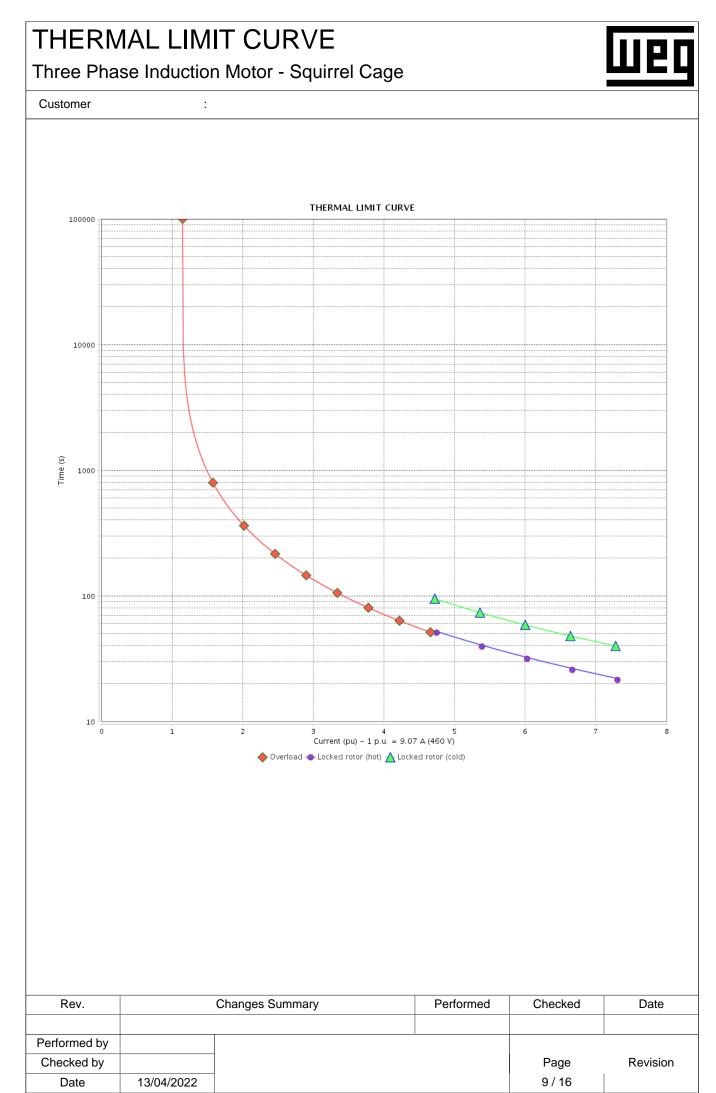


e property of WEG S/A. Reprinting is not allowed without written authorization of WEG S Subject to change without notice

LOAD PERFORMANCE CURVE

Three Phase Induction Motor - Squirrel Cage

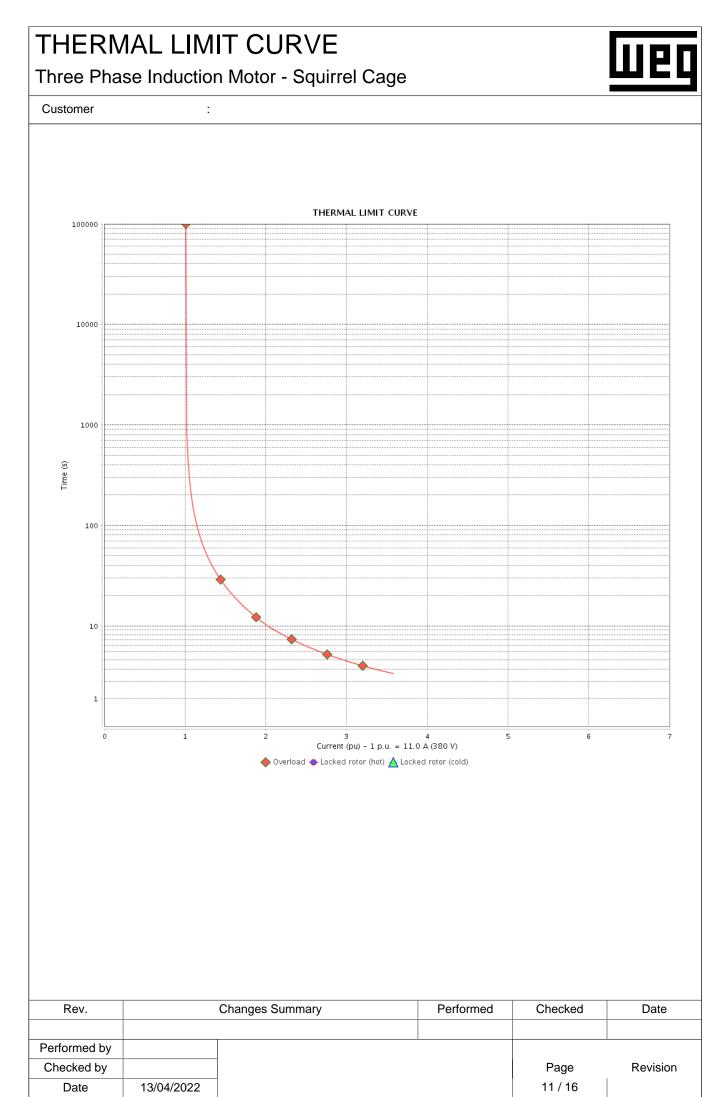
Customer



This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

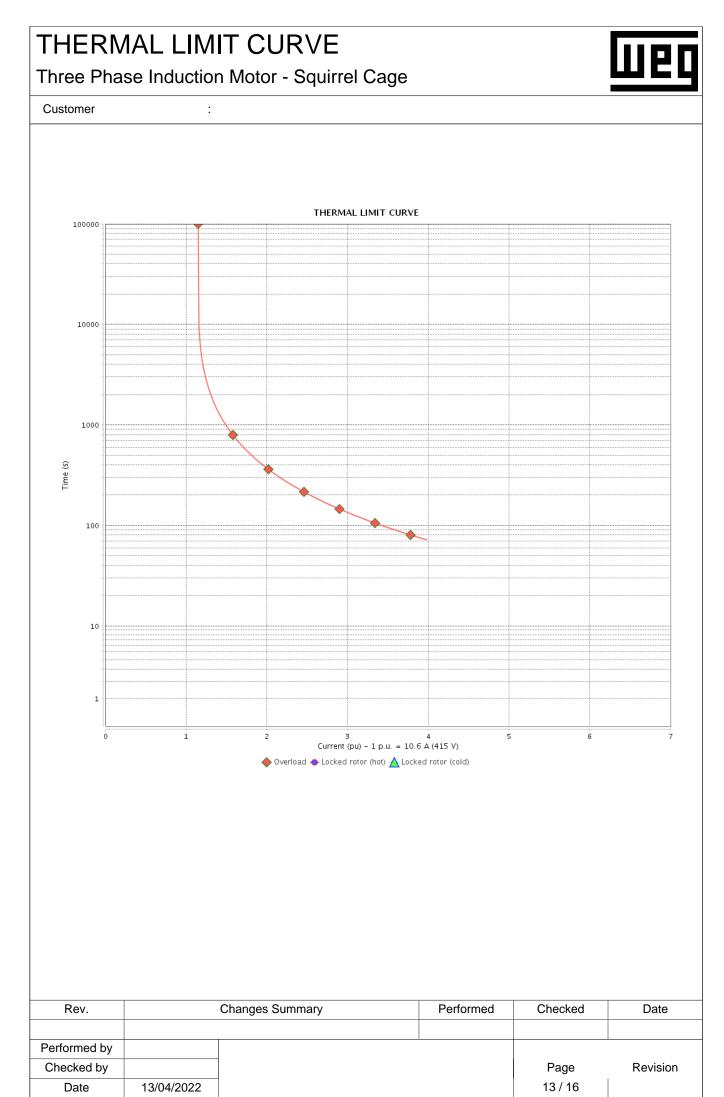
THERMA	L LIMIT C	CURVE		
Three Phase	Induction Mot	tor - Squirrel (Cage	
Customer	:			

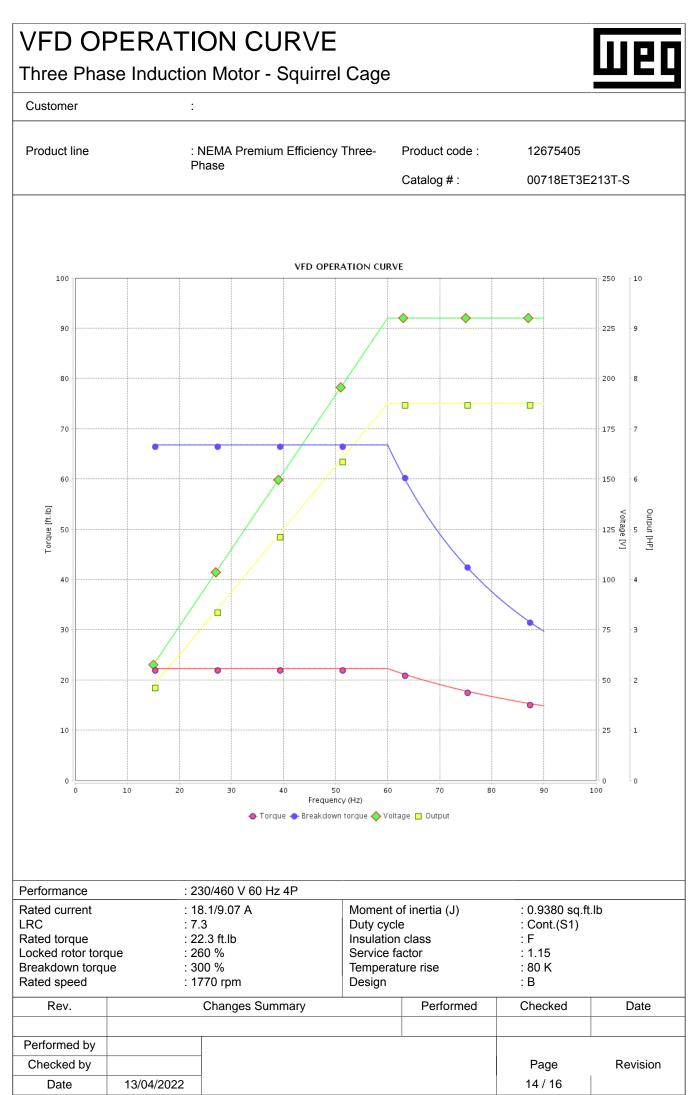
		: NEMA Premium Efficiency Three- Phase		Product code :		
		Flidse		Catalog # :	00718ET3E2	213T-S
erformance		: 230/460 V 60 Hz 4P				
ated current				f inertia (J)	: 0.9380 sq.ft.	
ated current RC		: 18.1/9.07 A N : 7.3 E	Duty cycle		: Cont.(S1)	
ated current RC ated torque		: 18.1/9.07 A N : 7.3 E : 22.3 ft.lb II		class		
ated current RC ated torque ocked rotor tor reakdown torq	que ue	: 18.1/9.07 A M : 7.3 E : 22.3 ft.lb H : 260 % E : 300 % T	Duty cycle nsulation Service fa Temperatu	class ctor	: Cont.(S1) : F : 1.15 : 80 K	
ated current RC ated torque ocked rotor tor reakdown torq ated speed	que ue	: 18.1/9.07 A M : 7.3 E : 22.3 ft.lb H : 260 % E : 300 % T	Duty cycle nsulation Service fa	class ctor	: Cont.(S1) : F : 1.15	lb
ated current RC ated torque ocked rotor tor reakdown torq ated speed eating constar	que ue	: 18.1/9.07 A M : 7.3 E : 22.3 ft.lb H : 260 % E : 300 % T	Duty cycle nsulation Service fa Temperatu	class ctor	: Cont.(S1) : F : 1.15 : 80 K	
ated current RC ated torque ocked rotor tor reakdown torq ated speed leating constant cooling constant	que ue	: 18.1/9.07 A M : 7.3 E : 22.3 ft.lb III : 260 % S : 300 % T : 1770 rpm E	Duty cycle nsulation Service fa Temperatu	class ctor ire rise	: Cont.(S1) : F : 1.15 : 80 K : B	
lated current RC lated torque ocked rotor tor reakdown torq lated speed	que ue	: 18.1/9.07 A M : 7.3 E : 22.3 ft.lb H : 260 % E : 300 % T	Duty cycle nsulation Service fa Temperatu	class ctor	: Cont.(S1) : F : 1.15 : 80 K	lb Date
ated current RC cated torque ocked rotor tor- reakdown torq ated speed leating constan cooling constan Rev.	que ue	: 18.1/9.07 A M : 7.3 E : 22.3 ft.lb III : 260 % S : 300 % T : 1770 rpm E	Duty cycle nsulation Service fa Temperatu	class ctor ire rise	: Cont.(S1) : F : 1.15 : 80 K : B	
Performance Rated current RC Rated torque ocked rotor torque ated speed leating constan Rev. Performed by Checked by	que ue	: 18.1/9.07 A M : 7.3 E : 22.3 ft.lb III : 260 % S : 300 % T : 1770 rpm E	Duty cycle nsulation Service fa Temperatu	class ctor ire rise	: Cont.(S1) : F : 1.15 : 80 K : B	



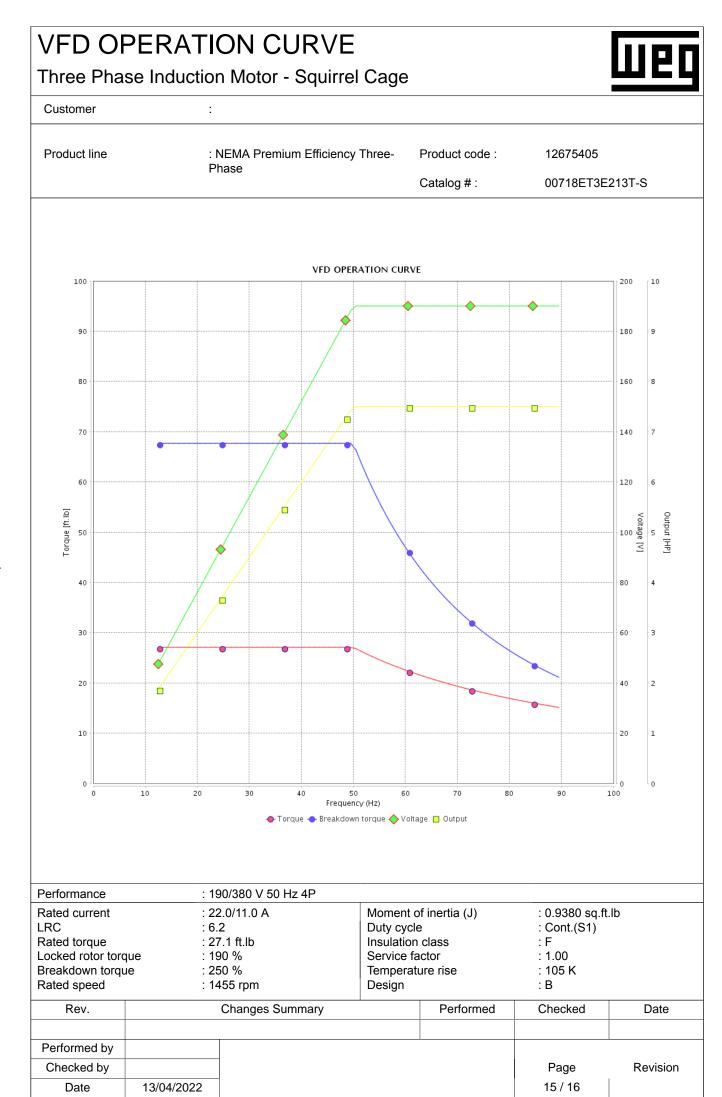
THERMA	L LIMIT (CURVE		
Three Phase	Induction Mo	otor - Squirrel	Cage	
Customer	:			

Customer

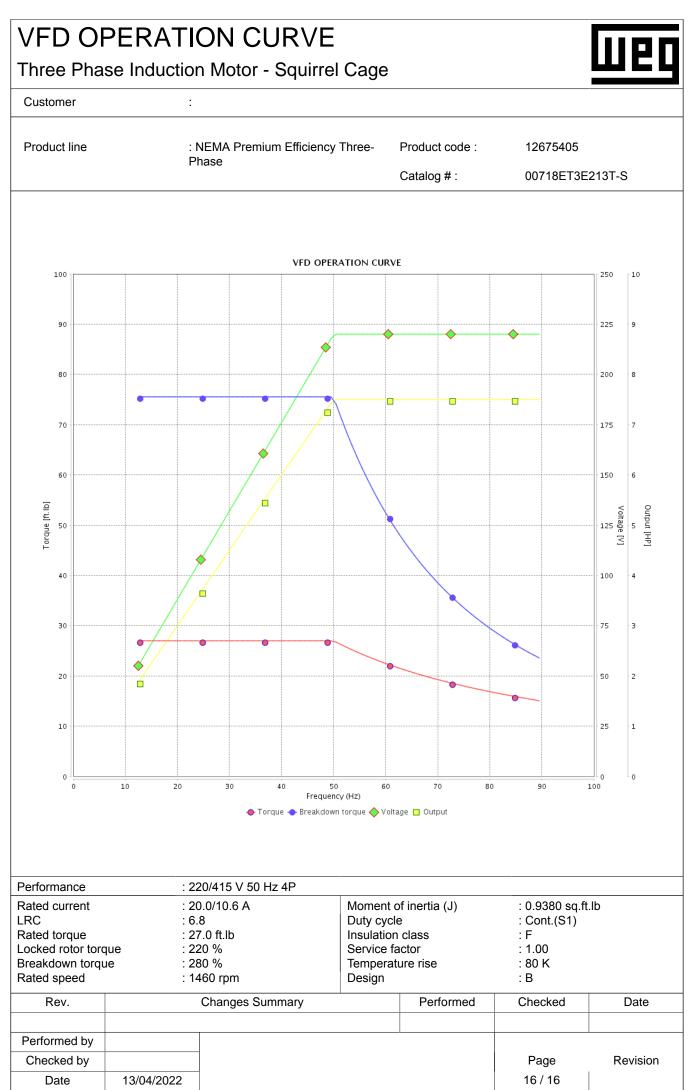

	PI PI			Product code :	12675405	
		nase		Catalog # :	00718ET3E	213T-S
Performance	: 19	90/380 V 50 Hz 4P				
Rated current	: 22	2.0/11.0 A	Moment	of inertia (J)	: 0.9380 sq.ft.	.lb
Rated current .RC	: 22 : 6.	2.0/11.0 A 2	Duty cycle	е	: Cont.(S1)	lb
Performance Rated current .RC Rated torque .ocked rotor toro	: 22 : 6. : 27 jue : 19	2.0/11.0 A 2 7.1 ft.lb 90 %	Duty cycle Insulation Service fa	e i class actor	: Cont.(S1) : F : 1.00	lb
Rated current .RC Rated torque .ocked rotor torq Breakdown torqu	: 22 : 6. : 27 jue : 19 ie : 25	2.0/11.0 A 2 7.1 ft.lb 30 % 50 %	Duty cycle Insulation Service fa Temperat	e i class actor	: Cont.(S1) : F : 1.00 : 105 K	lb
Rated current RC Rated torque Locked rotor toro Breakdown torqu Rated speed	: 22 : 6. : 27 jue : 19 ie : 29 : 14	2.0/11.0 A 2 7.1 ft.lb 90 %	Duty cycle Insulation Service fa	e i class actor	: Cont.(S1) : F : 1.00	lb
Rated current RC Rated torque ocked rotor toro Breakdown torqu Rated speed Heating constan	: 22 : 6. : 27 iue : 19 ie : 28 : 14	2.0/11.0 A 2 7.1 ft.lb 30 % 50 %	Duty cycle Insulation Service fa Temperat	e i class actor	: Cont.(S1) : F : 1.00 : 105 K	lb
Rated current RC Rated torque ocked rotor tord Breakdown torqu Rated speed Heating constan Cooling constan	: 22 : 6. : 27 iue : 19 ie : 28 : 14	2.0/11.0 A 2 7.1 ft.lb 90 % 50 % 455 rpm	Duty cycle Insulation Service fa Temperat	e i class actor ure rise	: Cont.(S1) : F : 1.00 : 105 K : B	
Rated current RC Rated torque ocked rotor toro Breakdown torqu Rated speed Heating constan	: 22 : 6. : 27 iue : 19 ie : 28 : 14	2.0/11.0 A 2 7.1 ft.lb 30 % 50 %	Duty cycle Insulation Service fa Temperat	e i class actor	: Cont.(S1) : F : 1.00 : 105 K	.lb Date
Rated current RC Rated torque ocked rotor torq Breakdown torqu Rated speed Heating constan Cooling constan Rev.	: 22 : 6. : 27 iue : 19 ie : 28 : 14	2.0/11.0 A 2 7.1 ft.lb 90 % 50 % 455 rpm	Duty cycle Insulation Service fa Temperat	e i class actor ure rise	: Cont.(S1) : F : 1.00 : 105 K : B	
Rated current RC Rated torque Locked rotor tord Breakdown torqu Rated speed Heating constan Cooling constan	: 22 : 6. : 27 iue : 19 ie : 28 : 14	2.0/11.0 A 2 7.1 ft.lb 90 % 50 % 455 rpm	Duty cycle Insulation Service fa Temperat	e i class actor ure rise	: Cont.(S1) : F : 1.00 : 105 K : B	

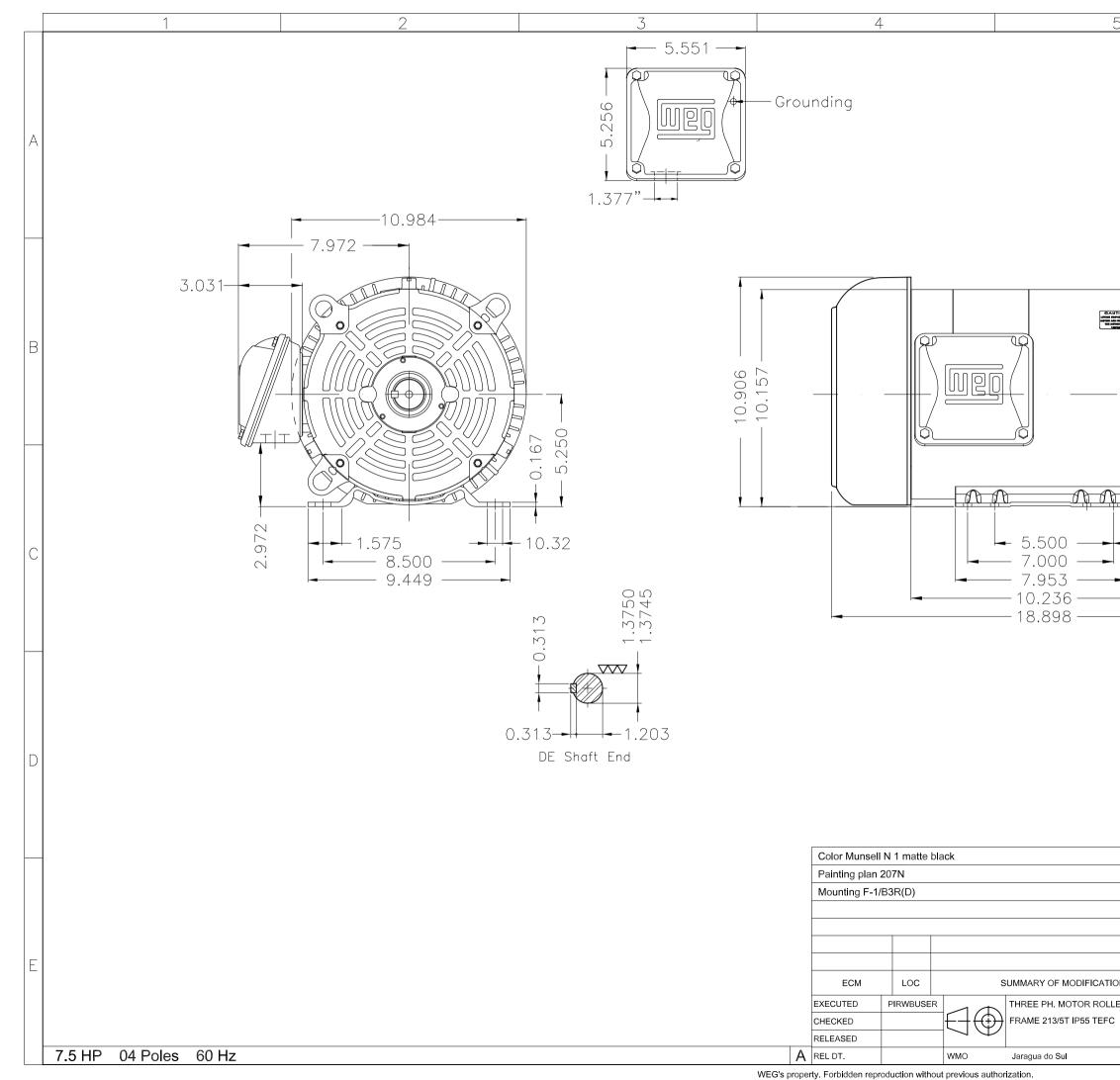


THERMAL LI	MIT CURVE
Three Phase Induct	ion Motor - Squirrel Cage
Customer	:



Product line	: NEMA Premium Efficiency Thre Phase	ee- Product code :	12675405	
		Catalog # :	00718ET3E213	T-S
erformance	: 220/415 V 50 Hz 4P			
			: 0.9380 sq.ft.lb	
		oment of inertia (J)		
RC	: 6.8 Du	uty cycle	: Cont.(S1)	
RC ated torque ocked rotor torque	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se	uty cycle sulation class ervice factor	: Cont.(S1) : F : 1.00	
RC ated torque cked rotor torque eakdown torque	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se : 280 % Te	uty cycle sulation class ervice factor mperature rise	: Cont.(S1) : F : 1.00 : 80 K	
RC ated torque cked rotor torque eakdown torque ated speed	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se : 280 % Te	uty cycle sulation class ervice factor	: Cont.(S1) : F : 1.00	
RC ated torque bocked rotor torque eakdown torque ated speed eating constant	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se : 280 % Te	uty cycle sulation class ervice factor mperature rise	: Cont.(S1) : F : 1.00 : 80 K	
RC ated torque pocked rotor torque reakdown torque ated speed eating constant	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se : 280 % Te : 1460 rpm De	uty cycle sulation class ervice factor mperature rise	: Cont.(S1) : F : 1.00 : 80 K	Date
RC ated torque bocked rotor torque reakdown torque ated speed eating constant poling constant	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se : 280 % Te	uty cycle sulation class ervice factor mperature rise esign	: Cont.(S1) : F : 1.00 : 80 K : B	Date
C ated torque bocked rotor torque eakdown torque ated speed eating constant poling constant Rev.	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se : 280 % Te : 1460 rpm De	uty cycle sulation class ervice factor mperature rise esign	: Cont.(S1) : F : 1.00 : 80 K : B	Date
ated current RC ated torque bocked rotor torque reakdown torque ated speed eating constant coling constant Rev. Performed by Checked by	: 6.8 Du : 27.0 ft.lb Ins : 220 % Se : 280 % Te : 1460 rpm De	uty cycle sulation class ervice factor mperature rise esign	: Cont.(S1) : F : 1.00 : 80 K : B	Date




This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

5			6		
		- 2.480			
					Dimensions in inches
IONS	EXECUTED	CHECKED	RELEASED	DATE	VER
LED STEEL PREM. E	EFF.	PREVI	EW		
0		WDD		ШЕ	A3
Produc	t Engineering	SHEET	1 / 1		XME

COUSTED COUSTED COUSTED COUSTER	For 60Hz: Class I, Zone 2, IIC Class I, DIV2, Gr. A.B.C.D 73 DIV 2 Inverter DIVY (5F1.00) CT 2:1/VT 1000:1	755 230/460 13.1/9.07 13.1/9.07 13.1/9.07 13.1/9.04 2.021 11.15 11.15 11.15 11.15 11.15 11.01 1	L2 L3 regrets the data model of the
	MADE IN MERICO MAT: 12675405 CC029A W01.TEOICDX0N HT00740ANPW01 22MAR2022 SIN:	PH 3 Hz 60 HP 7.5 FPH 3 Hz 60 HP 7.5 DUTY CONT KW 5.5 V 5.5 ALT 1000 m.a.sl. A 13.19.07 ALT 000 m.a.sl. A 170 BELGE 2082 20.14 PPM 1770 BFL0.1 A 170 New 1770 BFL0.2 A 16 A 170 BFL0.3 A 14 D 5 ALTERNATE ATTING: A 14 D 6 A 15 A 10 A 14 D 7 A 16 A 17 A 18 T 9 A 17 A 18 D 7 D 18 A 17 A 18 D 7 D 18 A 17 A 18 D 7 <td< th=""><th>AAL1 L2 L3 A L1 L2 L3 MARTING MAON THOU LINE MIRE FOR FORMER MARTING MAON THOU LINE MIRE FOR FORMER MARTING MAON THOU LINE MIRE FORMER MARTING MAON THOU LINE MIRE FORMER MARTING MAON THOU AND THOUSE MARTING MAON THOU AND THOUSE MARTING MAON THOUSE MAON THOUSE MA</th></td<>	AAL1 L2 L3 A L1 L2 L3 MARTING MAON THOU LINE MIRE FOR FORMER MARTING MAON THOU LINE MIRE FOR FORMER MARTING MAON THOU LINE MIRE FORMER MARTING MAON THOU LINE MIRE FORMER MARTING MAON THOU AND THOUSE MARTING MAON THOU AND THOUSE MARTING MAON THOUSE MAON THOUSE MA