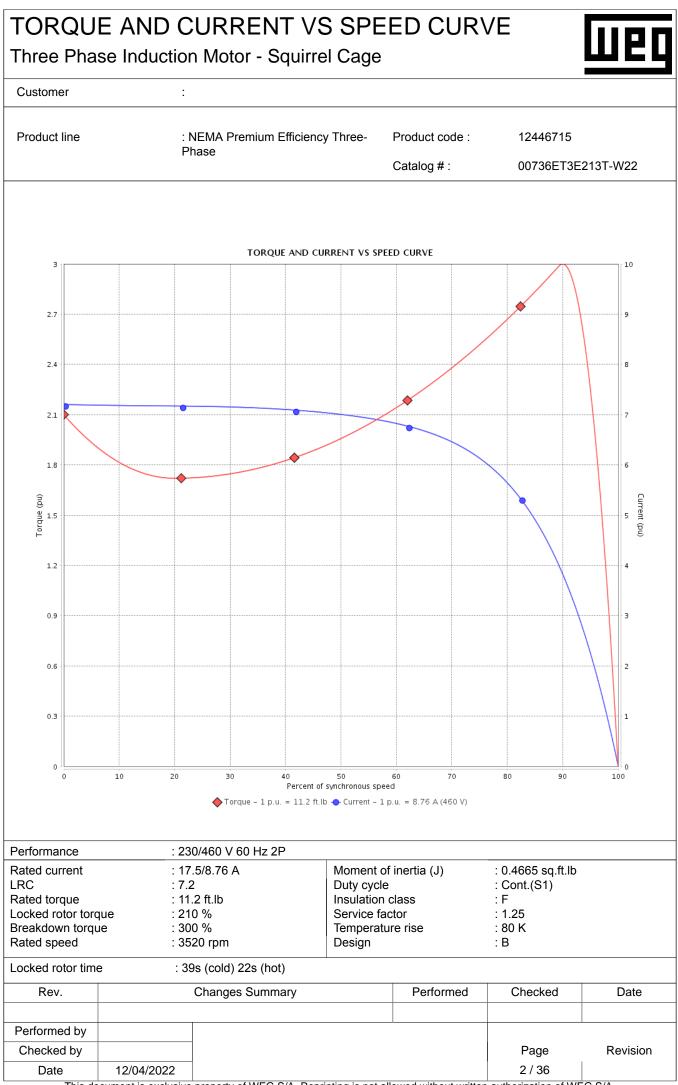
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:


Customer

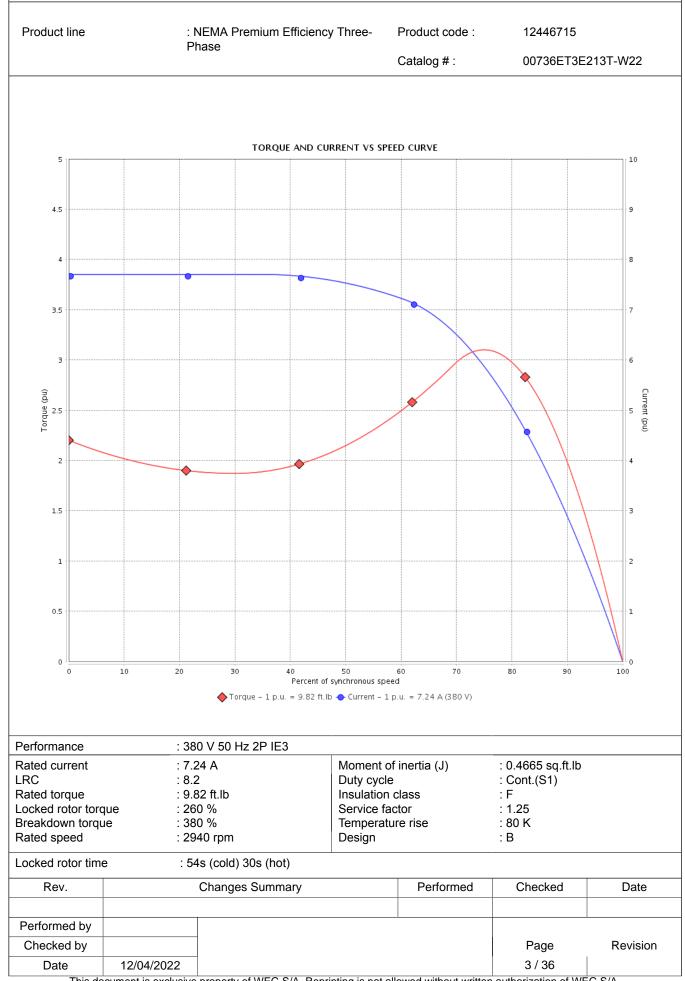
Frame Insulation class Duty cycle Ambient temperatu Altitude Protection degree Design Output [HP] Poles Frequency [Hz] Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] Locked rotor torque Breakdown torque [Service factor Temperature rise Locked rotor time Noise level ² Efficiency (%)		Phase : 213/5T : F : Cont.(S1) : -20°C to + : 1000 m.a.s : IP55 : B 7.5 2 60 230/460 17.5/8.76 126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300 1.25	s.l. 5 2 50 380 7.24 59.4 8.2x(Code J) 2.84 2940 2.00 9.82	Mounti Rotatio Startin Approx	on ¹ g method c. weight ³ nt of inertia (J) 5 2 50 415 6.92 67.1	: I(: F : E : C : 1 : 0 7.5 2 50 380 10.6 60.4	80th (CW and Direct On Line 57 lb .4665 sq.ft.lb 7.5 2 50 400 10.2 65.3 6.4x(Code G)	CCW) 7.5 2 50 415 9.82 67.8 6.9x(Code F
Insulation class Duty cycle Ambient temperatu Altitude Protection degree Design Dutput [HP] Poles Frequency [Hz] Rated voltage [V] Rated current [A] R. Amperes [A] R. Amperes [A] R. Amperes [A] RC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] .ocked rotor torque Breakdown torque [Service factor Temperature rise .ocked rotor time		: F : Cont.(S1) : -20°C to +. : 1000 m.a.s : IP55 : B 7.5 2 60 230/460 17.5/8.76 126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	s.l. 5 2 50 380 7.24 59.4 8.2x(Code J) 2.84 2940 2.00 9.82	Mounti Rotatic Startin Approx Momen 5 2 50 400 7.03 64.0 9.1x(Code J) 3.05 2950	ng yn ¹ g method k. weight ³ nt of inertia (J) 5 2 50 415 6.92 67.1 9.7x(Code K)	: F : E : C : 1 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	-1 Both (CW and Direct On Line 57 lb .4665 sq.ft.lb 7.5 2 50 400 10.2 65.3 6.4x(Code G)	7.5 2 50 415 9.82 67.8 6.9x(Code H
Dutput [HP] Poles Frequency [Hz] Rated voltage [V] Rated current [A] R. Amperes [A] RC [A] No load current [A] Rated speed [RPM] Blip [%] Rated torque [ft.lb] .ocked rotor torque Breakdown torque [Service factor Temperature rise .ocked rotor time	[%]	7.5 2 60 230/460 17.5/8.76 126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	2 50 380 7.24 59.4 8.2x(Code J) 2.84 2940 2.00 9.82	2 50 400 7.03 64.0 9.1x(Code J) 3.05 2950	2 50 415 6.92 67.1 9.7x(Code K)	2 50 380 10.6 60.4 5.7x(Code F)	2 50 400 10.2 65.3 6.4x(Code G)	2 50 415 9.82 67.8 6.9x(Code H
Poles Frequency [Hz] Rated voltage [V] Rated current [A] L. R. Amperes [A] LRC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] Locked rotor torque Breakdown torque [Service factor Temperature rise Locked rotor time	[%]	2 60 230/460 17.5/8.76 126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	2 50 380 7.24 59.4 8.2x(Code J) 2.84 2940 2.00 9.82	2 50 400 7.03 64.0 9.1x(Code J) 3.05 2950	2 50 415 6.92 67.1 9.7x(Code K)	2 50 380 10.6 60.4 5.7x(Code F)	2 50 400 10.2 65.3 6.4x(Code G)	2 50 415 9.82 67.8 6.9x(Code H
Frequency [Hz] Rated voltage [V] Rated current [A] R. Amperes [A] .RC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] Locked rotor torque Breakdown torque [Service factor Femperature rise Locked rotor time	[%]	60 230/460 17.5/8.76 126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	50 380 7.24 59.4 8.2x(Code J) 2.84 2940 2.00 9.82	50 400 7.03 64.0 9.1x(Code J) 3.05 2950	50 415 6.92 67.1 9.7x(Code K)	50 380 10.6 60.4 5.7x(Code F)	50 400 10.2 65.3 6.4x(Code G)	50 415 9.82 67.8 6.9x(Code H
Rated voltage [V] Rated current [A] R. Amperes [A] RC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] .ocked rotor torque Breakdown torque [Service factor Femperature rise .ocked rotor time	[%]	230/460 17.5/8.76 126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	380 7.24 59.4 8.2x(Code J) 2.84 2940 2.00 9.82	400 7.03 64.0 9.1x(Code J) 3.05 2950	415 6.92 67.1 9.7x(Code K)	380 10.6 60.4 5.7x(Code F)	400 10.2 65.3 6.4x(Code G)	415 9.82 67.8 6.9x(Code I
Rated current [A] R. Amperes [A] .RC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] .ocked rotor torque Breakdown torque [f Service factor Femperature rise .ocked rotor time Noise level ²	[%]	17.5/8.76 126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	7.24 59.4 8.2x(Code J) 2.84 2940 2.00 9.82	7.03 64.0 9.1x(Code J) 3.05 2950	6.92 67.1 9.7x(Code K)	10.6 60.4 5.7x(Code F)	10.2 65.3 6.4x(Code G)	9.82 67.8 6.9x(Code I
R. Amperes [A] RC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] ocked rotor torque Breakdown torque [f Service factor Temperature rise ocked rotor time	[%]	126/63.1 7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	59.4 8.2x(Code J) 2.84 2940 2.00 9.82	64.0 9.1x(Code J) 3.05 2950	67.1 9.7x(Code K)	60.4 5.7x(Code F)	65.3 6.4x(Code G)	67.8 6.9x(Code I
RC [A] No load current [A] Rated speed [RPM] Slip [%] Rated torque [ft.lb] Locked rotor torque Breakdown torque [Service factor Femperature rise Locked rotor time	[%]	7.2x(Code H) 5.40/2.70 3520 2.22 11.2 210 300	8.2x(Code J) 2.84 2940 2.00 9.82	9.1x(Code J) 3.05 2950	9.7x(Code K)	5.7x(Code F)	6.4x(Code G)	6.9x(Code I
Rated speed [RPM] Slip [%] Rated torque [ft.lb] Locked rotor torque Breakdown torque [' Service factor Femperature rise Locked rotor time	[%]	3520 2.22 11.2 210 300	2940 2.00 9.82	2950	3.22	0.70	, ,	
Rated speed [RPM] Slip [%] Rated torque [ft.lb] Locked rotor torque Breakdown torque [' Service factor Femperature rise Locked rotor time	[%]	3520 2.22 11.2 210 300	2940 2.00 9.82	2950		Z./U	2.90	3.30
Slip [%] Rated torque [ft.lb] Locked rotor torque Breakdown torque [Service factor Temperature rise Locked rotor time	[%]	2.22 11.2 210 300	2.00 9.82		2952	2895	2905	2915
Rated torque [ft.lb] ocked rotor torque Breakdown torque [' Service factor Temperature rise ocked rotor time		11.2 210 300	9.82	1 1 h/	1.60	3.50	3.17	2.83
Locked rotor torque Breakdown torque [' Bervice factor Femperature rise Locked rotor time		210 300		9.79	9.77	13.6	13.5	13.5
Breakdown torque [' Service factor Femperature rise Locked rotor time		300	260	290	320	170	190	210
Service factor Temperature rise Locked rotor time			380	420	450	229	260	210
Temperature rise Locked rotor time Noise level ²			1.25	1.25	1.25	1.25	1.25	1.25
Locked rotor time		80 K	80 K	80 K	80 K	80 K	80 K	80 K
_		39s (cold) 22s (hot)	54s (cold) 30s (hot)	54s (cold) 30s (hot)	54s (cold) 30s (hot)	36s (cold) 20s (hot)	36s (cold) 20s (hot)	36s (cold) 20s (hot)
_		68.0 dB(A)	63.0 dB(A)	63.0 dB(A)	63.0 dB(A)	63.0 dB(A)	63.0 dB(A)	63.0 dB(A
Efficiency (%)	25%	87.2	86.4	86.1	85.8	89.1	88.1	87.2
	50%	87.5	86.7	86.4	86.1	88.5	87.5	87.5
	75%	89.5	88.2	88.3	88.5	88.5	88.5	88.5
	100%	89.5	88.2	88.3	88.5	87.5	87.5	88.5
	25%	0.52	0.47	0.43	0.41	0.57	0.54	0.50
/	50%	0.75	0.74	0.70	0.67	0.80	0.77	0.74
Power Factor	75%	0.84	0.83	0.81	0.78	0.87	0.86	0.84
	100%	0.88	0.88	0.86	0.84	0.90	0.89	0.88
Bearing type Sealing Lubrication interva Lubricant amount Lubricant type	al	Drive end : 6308 ZZ : V'Ring : -		ZZ Max. tra	tion loads action ompression		35 lb 92 lb	<u> </u>
Notes USABLE @208V 1 This revision replac	ces and car	15 SFA 22.3A			are average va			
must be eliminated (1) Looking the mot (2) Measured at 1m (3) Approximate we manufacturing proc (4) At 100% of full I	tor from the n and with t eight subjec cess.	olerance of +3		power s MG-1.	supply, subjec	t to the tolerar	nces stipulate	d in NEMA
Rev.		Changes	Summary		Performe	ed Che	ecked	Date
Performed by Checked by						, D		Revision
Checked by							age / 36	REVISION

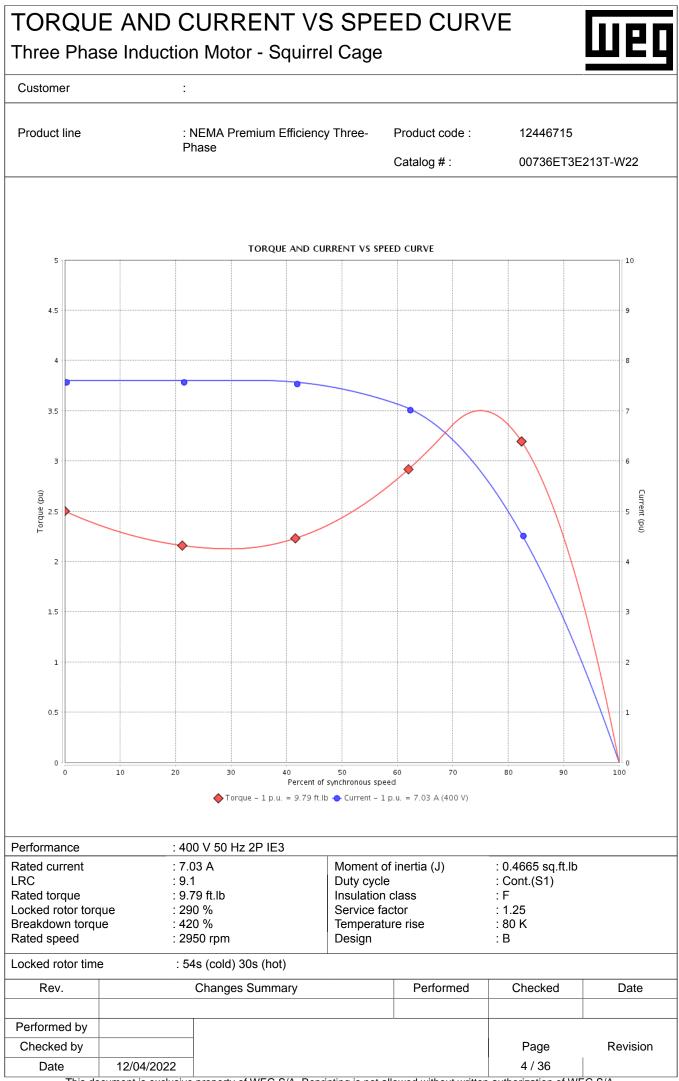
Шер

 Date
 12/04/2022
 1 / 36

 This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.
 WEG S/A.

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

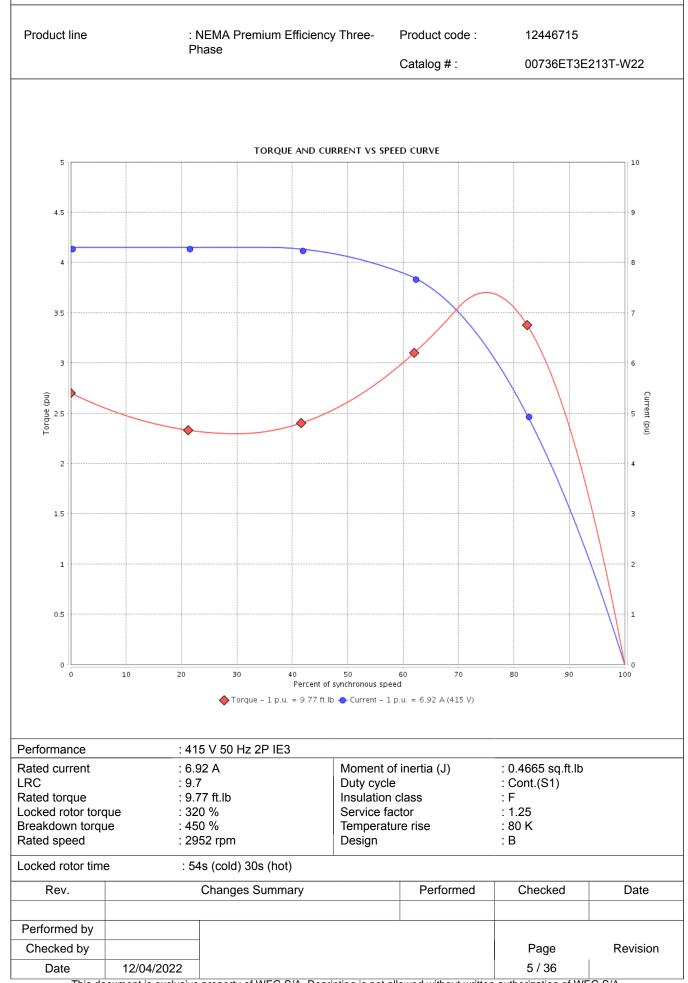

TORQUE AND CURRENT VS SPEED CURVE

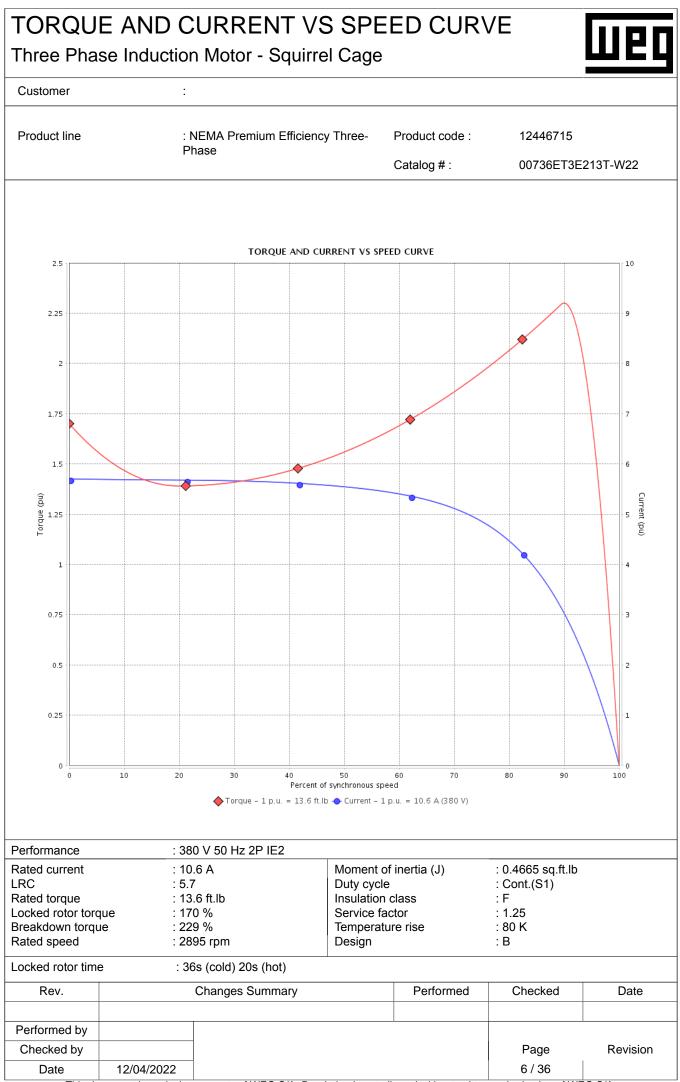

Three Phase Induction Motor - Squirrel Cage

:

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

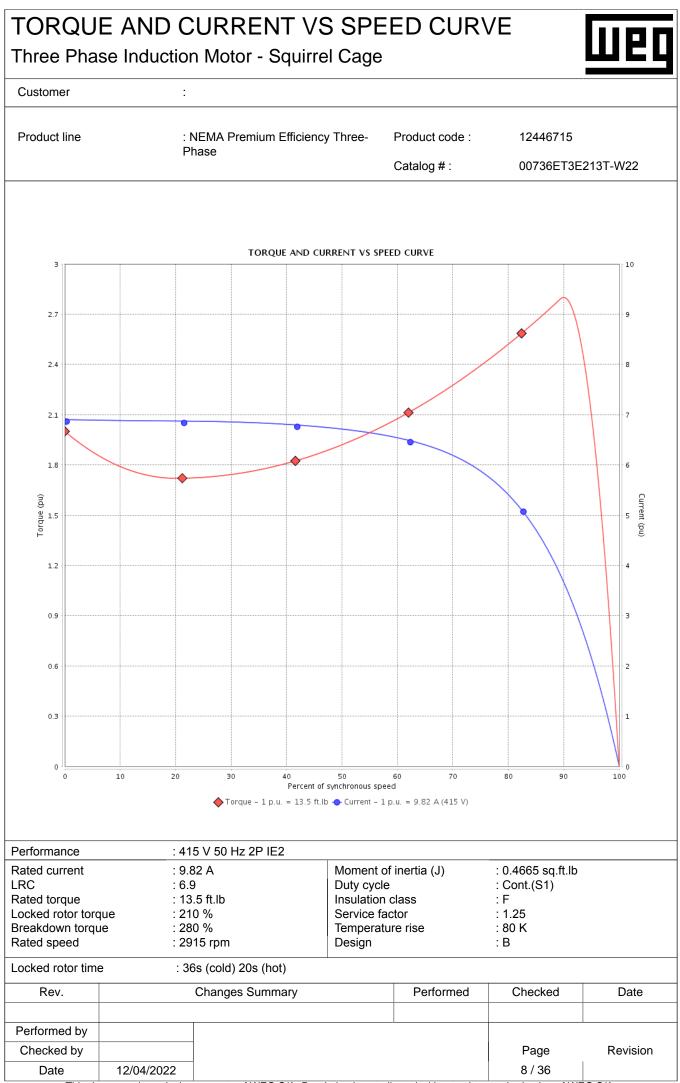

TORQUE AND CURRENT VS SPEED CURVE


Three Phase Induction Motor - Squirrel Cage

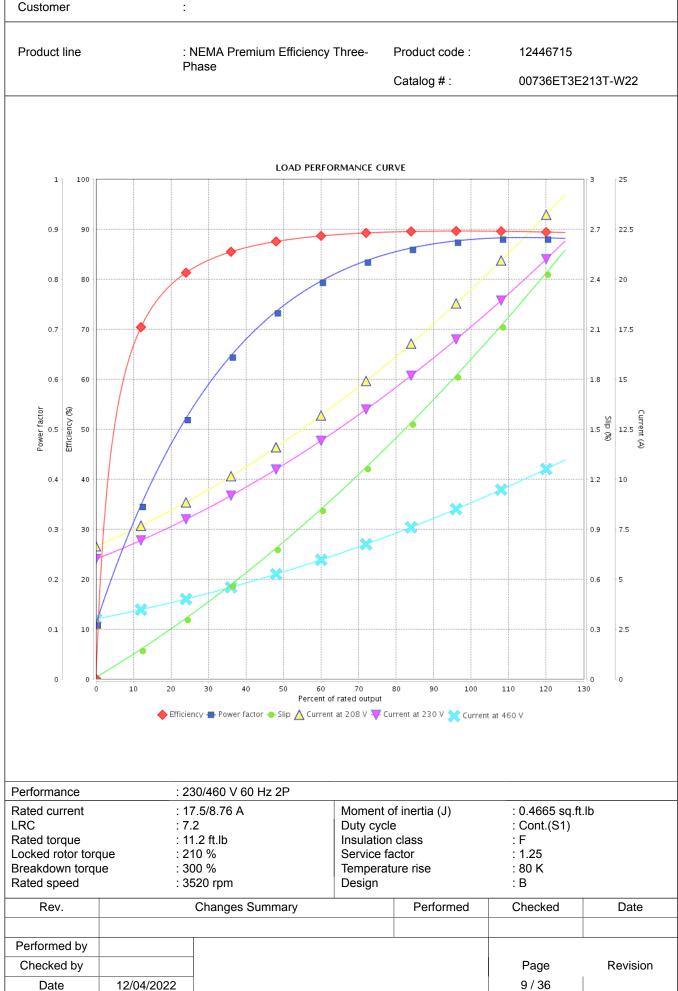
:

Customer

TORQUE AND CURRENT VS SPEED CURVE


Three Phase Induction Motor - Squirrel Cage

:



Product line	: NEMA Premium	Efficiency Three-	Product code :	12446715	
	Phase	Phase		00736ET3E213T-W22	
	TORQU	e and current vs si	PEED CURVE		
3					10
2.7					9
2.4					
2.4					8
2.1					7
1.8	•				6
(înd) an 1.5	•				Current (pu)
Torg				X	(pu)
1.2					4
0.9					з
0.6					2
0.3					1
0 10	20 30	40 50	60 70	80 90	100
	♦ Torque – 1 p.u	Percent of synchronous sp . = 13.5 ft.lb 🔷 Current –			
erformance	: 400 V 50 Hz 2P IE2				
ated current RC	: 10.2 A : 6.4	Moment Duty cyc	of inertia (J) le	: 0.4665 sq.ft.lb : Cont.(S1)	
ated torque ocked rotor torque	: 13.5 ft.lb : 190 %	Insulation Service f		: F : 1.25	
reakdown torque	: 260 %	Tempera		: 80 K : B	
ated speed	: 2905 rpm : 36s (cold) 20s (hot	Design		. D	
Rev.	Changes Summ		Performed	Checked	Date
		,			
Performed by			· · ·	_	
Checked by				Page	Revision

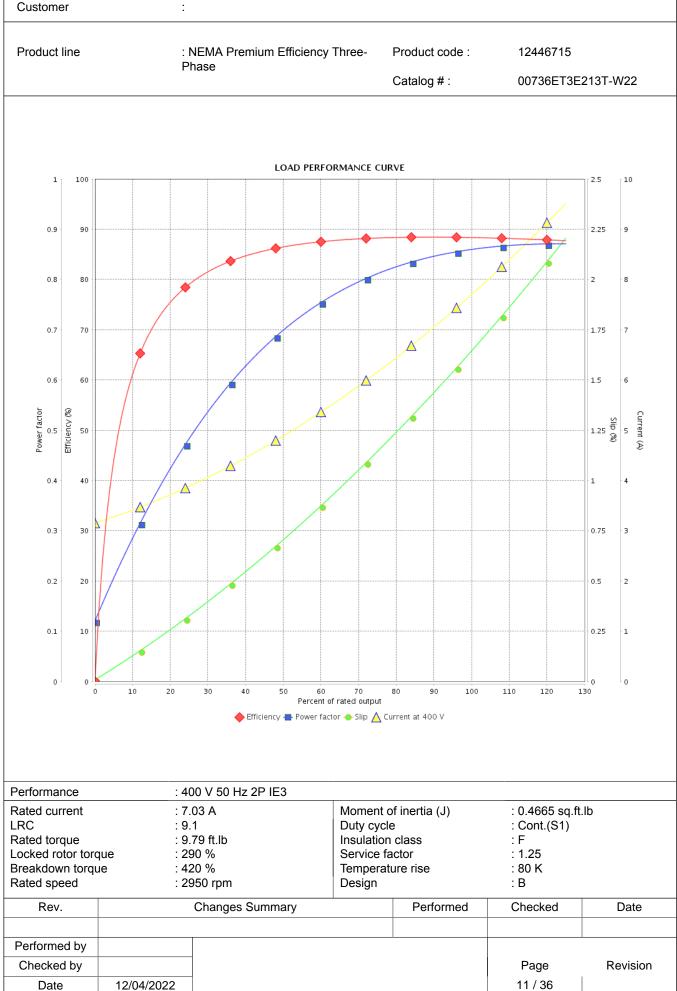
Three Phase Induction Motor - Squirrel Cage

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

LOAD PERFORMANCE CURVE Three Phase Induction Motor - Squirrel Cage Customer : Product line : NEMA Premium Efficiency Three-Product code : 12446715 Phase Catalog # : 00736ET3E213T-W22 LOAD PERFORMANCE CURVE 100 1 10 2.7 0.9 90 9 \wedge 0.8 80 2.4 8 Δ 7 0.7 70 2.1 Δ 0.6 60 1.8 6 Power factor Efficiency (%) Current Slip (%) 0.5 50 1.5 5 Δ ē Δ 0.4 40 1.2 4 Δ 0.3 30 0.9 з 0.2 20 0.6 - 2 0.1 10 0.3 1 0 0 0 0 ó 10 20 100 110 120 130 30 40 50 60 70 80 90 Percent of rated output 🔶 Efficiency 🖶 Power factor 🔶 Slip 🛆 Current at 380 V Performance : 380 V 50 Hz 2P IE3 : 7.24 A Rated current Moment of inertia (J) : 0.4665 sq.ft.lb LRC Duty cycle : Cont.(S1) : 8.2 : 9.82 ft.lb Insulation class Rated torque : F Locked rotor torque : 260 % Service factor : 1.25 Breakdown torque : 380 % Temperature rise : 80 K Rated speed : 2940 rpm Design : B Rev. Performed Checked Date **Changes Summary** Performed by Page Checked by Revision

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice


10/36

Date

12/04/2022

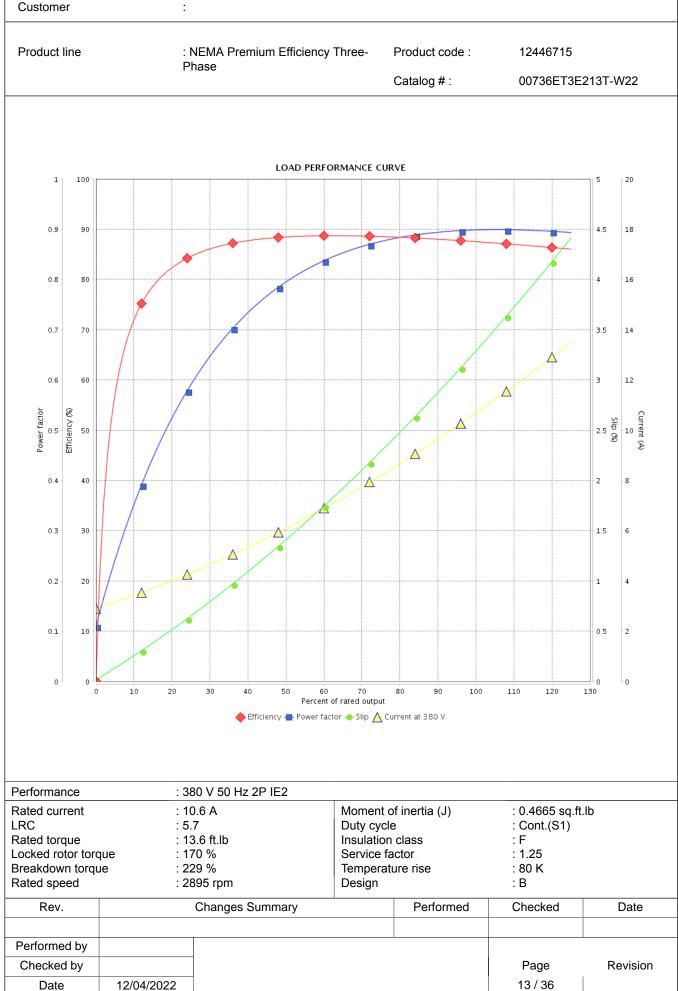
Three Phase Induction Motor - Squirrel Cage

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

LOAD PERFORMANCE CURVE Three Phase Induction Motor - Squirrel Cage Customer : Product line : NEMA Premium Efficiency Three-Product code : 12446715 Phase Catalog # : 00736ET3E213T-W22 LOAD PERFORMANCE CURVE 100 1 10 0.9 90 1.8 9 0.8 80 1.6 8 7 70 0.7 1.4 Δ 0.6 60 1.2 6 Power factor Efficiency (%) Current Slip (%) 0.5 50 1 \wedge ē \wedge 0.4 40 Δ 0.8 4 Δ 0.3 30 0.6 з 0.2 20 0.4 - 2 0.1 10 0.2 1 0 0 0 0 ó 10 20 100 110 120 130 30 40 50 60 70 80 90 Percent of rated output 🔶 Efficiency 🖶 Power factor 🔶 Slip 🛆 Current at 415 V Performance : 415 V 50 Hz 2P IE3 Rated current : 6.92 A Moment of inertia (J) : 0.4665 sq.ft.lb LRC : 9.7 Duty cycle : Cont.(S1) : 9.77 ft.lb Insulation class Rated torque : F Locked rotor torque : 320 % Service factor : 1.25 Breakdown torque : 450 % Temperature rise : 80 K Rated speed : 2952 rpm Design : B Rev. Performed Checked Date **Changes Summary** Performed by Checked by Revision Page

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

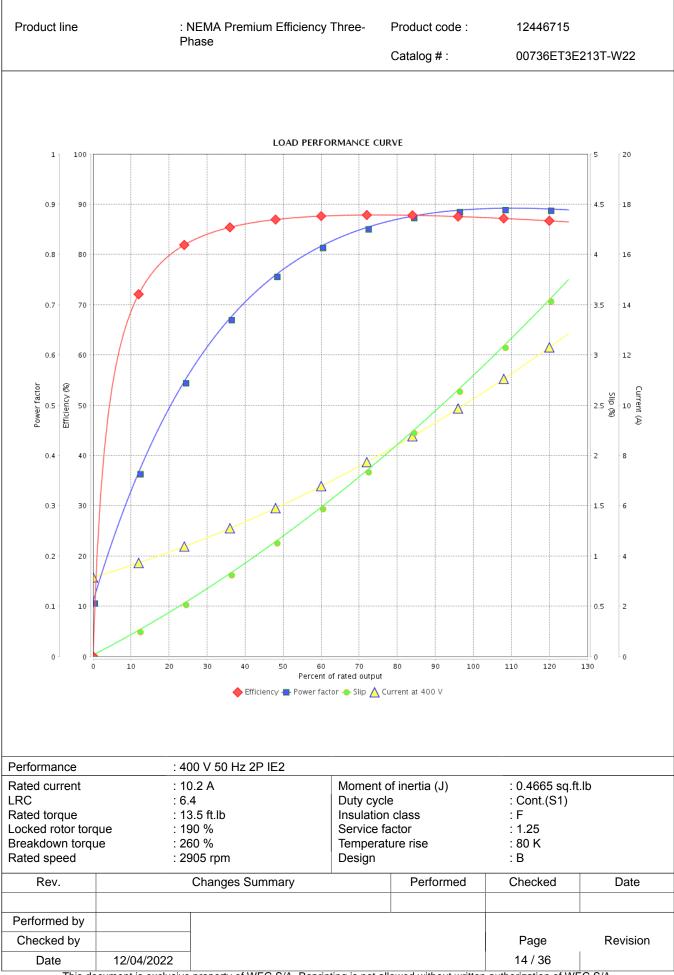

12/36

Date

12/04/2022

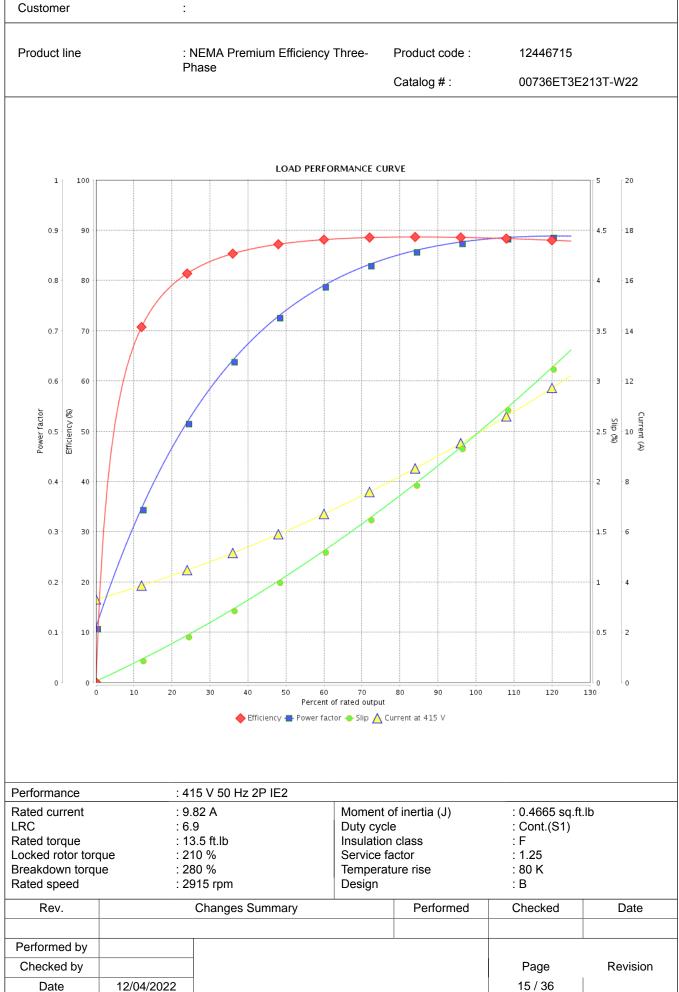
Three Phase Induction Motor - Squirrel Cage

Customer


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Three Phase Induction Motor - Squirrel Cage

:



Customer

Three Phase Induction Motor - Squirrel Cage

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

THERMAL LI	MIT CURVE			
Three Phase Induc	tion Motor - Squirrel Cage			
Customer	:			
Product line	: NEMA Premium Efficiency Three- Phase	Product code :	12446715	

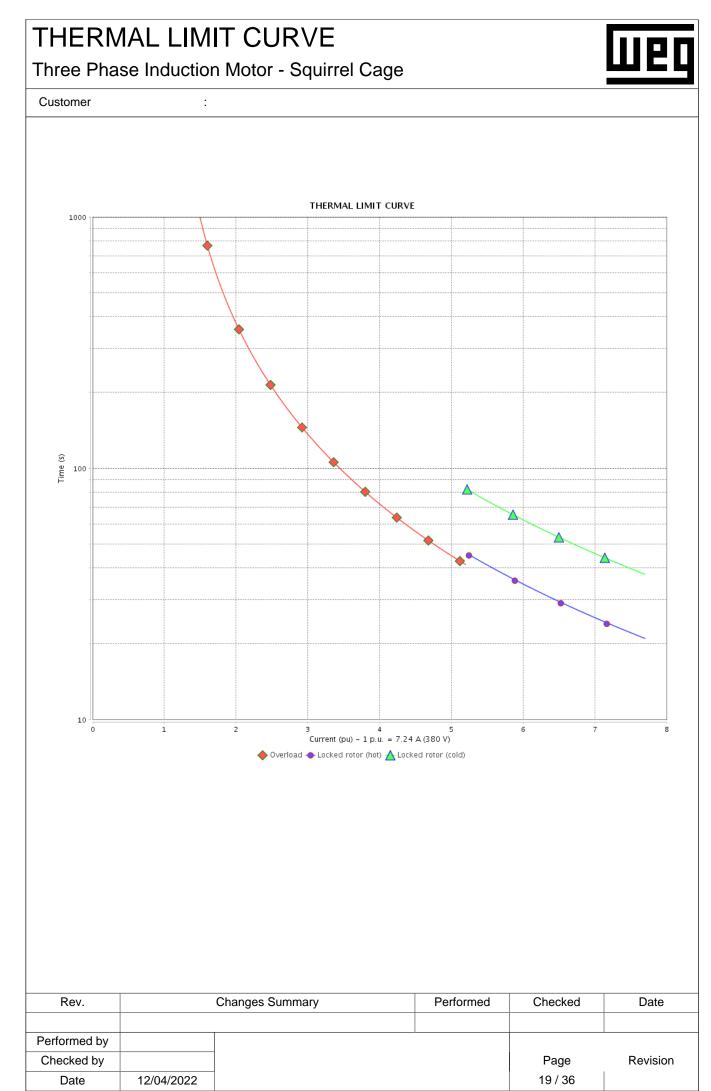
Catalog # :

00736ET3E213T-W22

Performance	: 2:	30/460 V 60 Hz 2P				
Rated current: 17.5/8.76 ALRC: 7.2Rated torque: 11.2 ft.lbLocked rotor torque: 210 %Breakdown torque: 300 %Rated speed: 3520 rpm		Moment o Duty cycle Insulation Service fa Temperatu Design	class ctor	: 0.4665 sq.ft : Cont.(S1) : F : 1.25 : 80 K : B	.lb	
Heating constan	t					
Cooling constant	t					
Rev.	Rev. Changes Summary			Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	12/04/2022	1			16 / 36	

 Date
 12/04/2022
 16 / 36

 This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

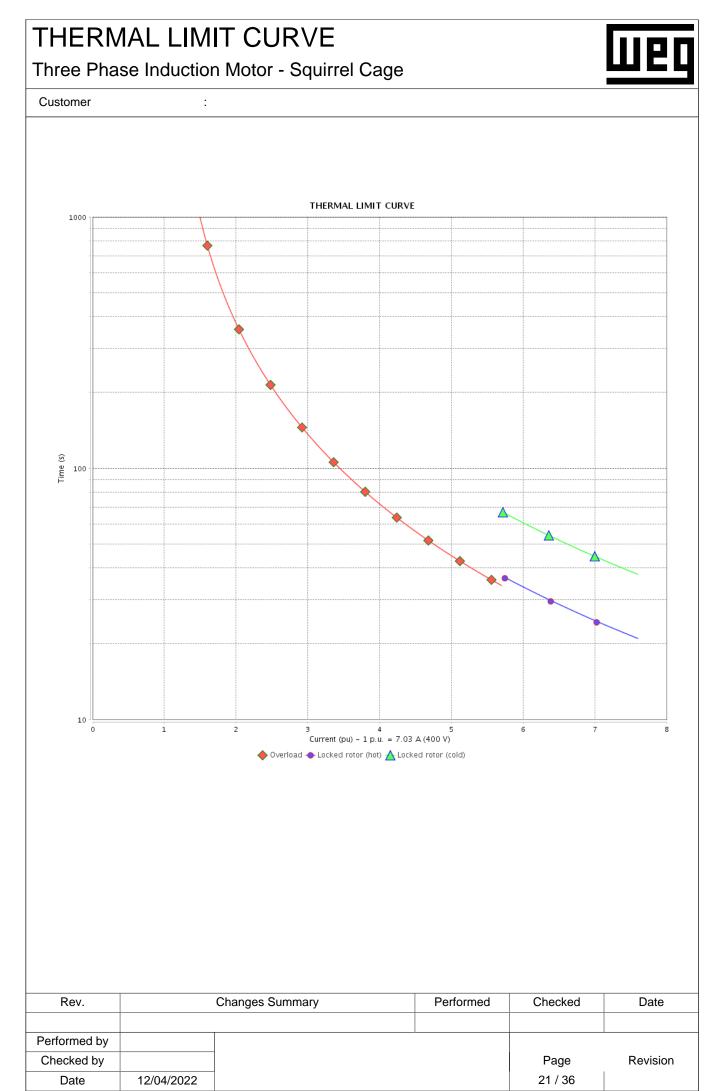

THERMAL LI	MIT CURVE		Γ
Three Phase Induct	ion Motor - Squirrel Cage		
Customer	:		
Product line	: NEMA Premium Efficiency Three- Phase	Product code :	12446715

Catalog # :

E

00736ET3E213T-W22

Performance	:	380 V 50 Hz 2P IE3				
Rated current: 7.24 ALRC: 8.2Rated torque: 9.82 ft.lbLocked rotor torque: 260 %Breakdown torque: 380 %Rated speed: 2940 rpm		8.2 9.82 ft.lb 260 % 380 %	Moment of Duty cycle Insulation Service fa Temperate Design	class ctor	: 0.4665 sq.ft : Cont.(S1) : F : 1.25 : 80 K : B	lb
Heating constant	t					
Cooling constant	t					
Rev.	Rev. Changes Summary			Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	12/04/2022				18 / 36	

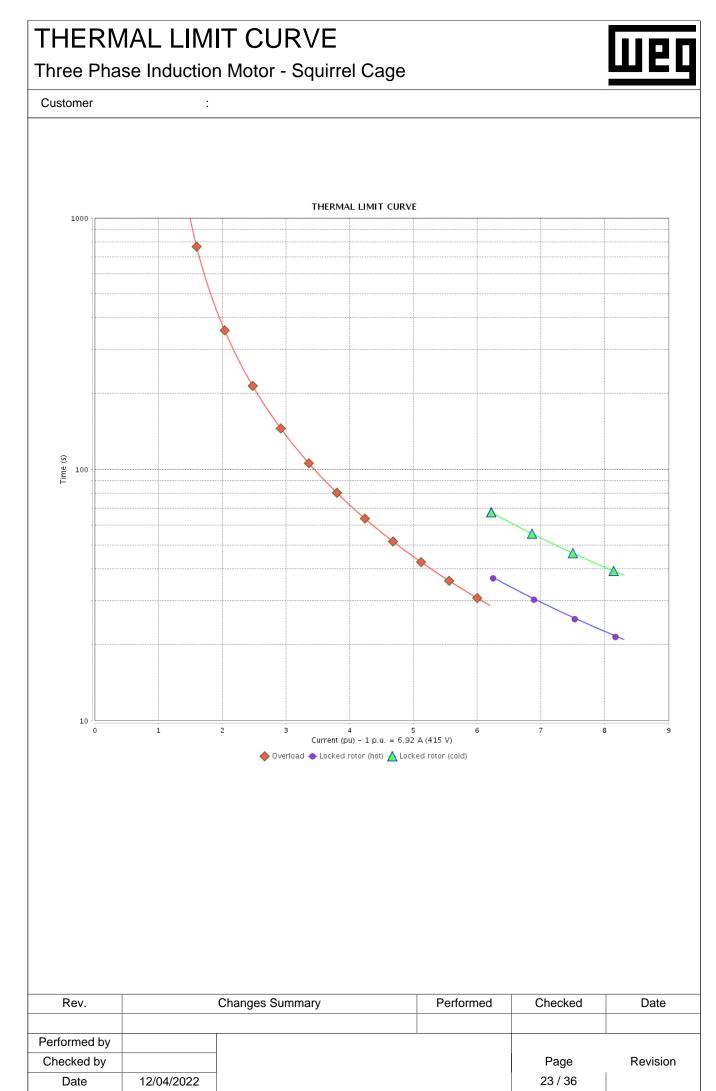


THERMAL LI	MIT CURVE		Г
Three Phase Induct	ion Motor - Squirrel Cage		
Customer	:		
Product line	: NEMA Premium Efficiency Three- Phase	Product code :	12446715

Catalog # :

00736ET3E213T-W22

Performance	: 40	00 V 50 Hz 2P IE3				
Rated current: 7.03 ALRC: 9.1Rated torque: 9.79 ft.lbLocked rotor torque: 290 %Breakdown torque: 420 %Rated speed: 2950 rpm		1 79 ft.lb 90 % 20 %	Moment o Duty cycle Insulation Service fa Temperatu Design	class ctor	: 0.4665 sq.ft : Cont.(S1) : F : 1.25 : 80 K : B	lb
Heating constant						
Cooling constant	t					
Rev.		Changes Summary		Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	12/04/2022				20 / 36	

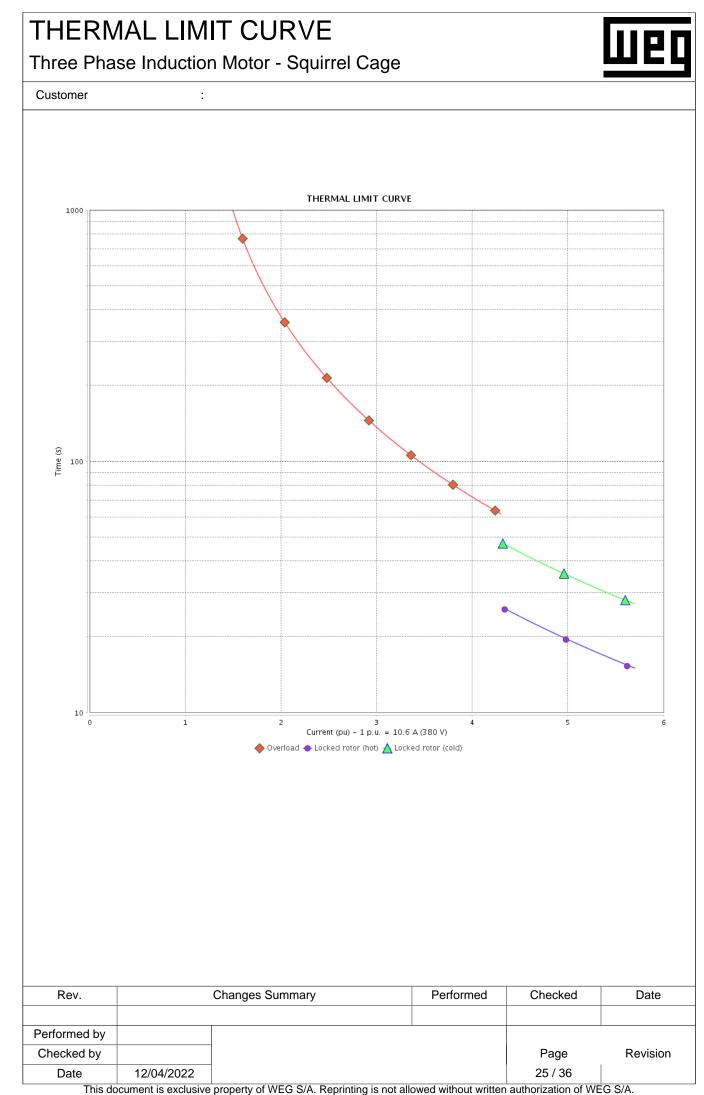

THERMAL	LIMIT CURVE			6
	duction Motor - Squirrel Cage	;	r	
Customer Product line	: : NEMA Premium Efficiency Three-	Product code :	12446715	
FIGUUCI IIIE	Phase	FIDUUCI COUE .	12440715	

Catalog # :

2

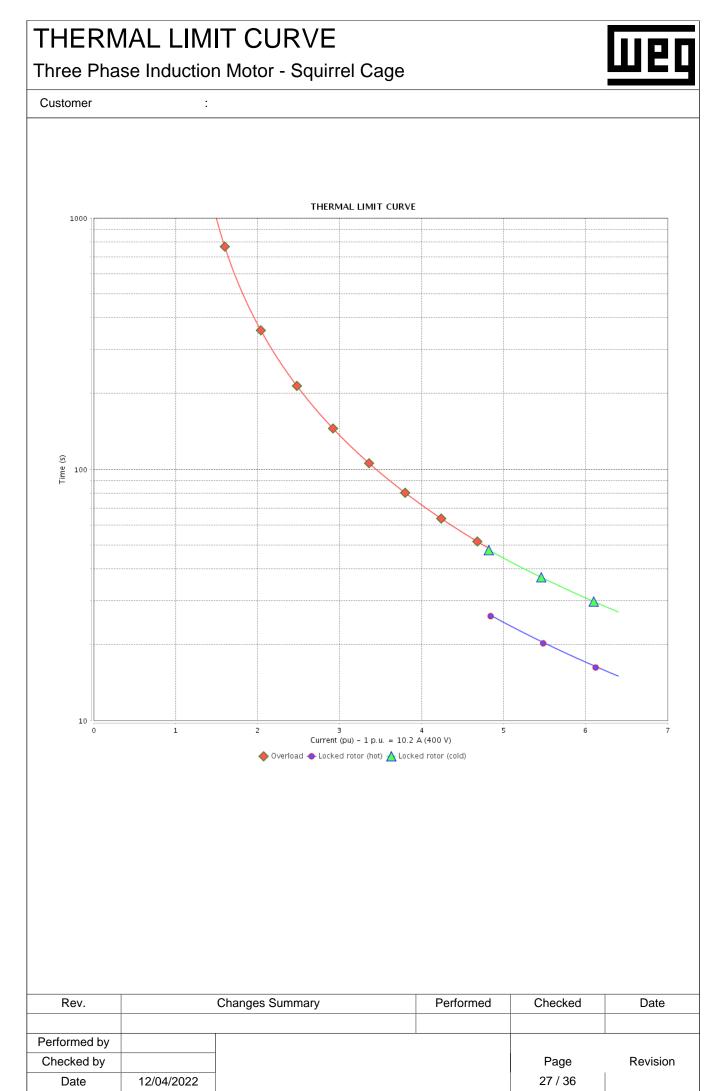
00736ET3E213T-W22

Performance	:4	15 V 50 Hz 2P IE3				
Rated current: 6.92 ALRC: 9.7Rated torque: 9.77 ft.lbLocked rotor torque: 320 %Breakdown torque: 450 %Rated speed: 2952 rpm		Moment o Duty cycle Insulation Service fa Temperatu Design	class ctor	: 0.4665 sq.ft. : Cont.(S1) : F : 1.25 : 80 K : B	lb	
Heating constant	t					
Cooling constant	t					
Rev.		Changes Summary		Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	12/04/2022				22 / 36	


THERMAL LI	MIT CURVE		Г
Three Phase Induct	ion Motor - Squirrel Cage		
Customer	:		
Product line	: NEMA Premium Efficiency Three- Phase	Product code :	12446715

Catalog # :

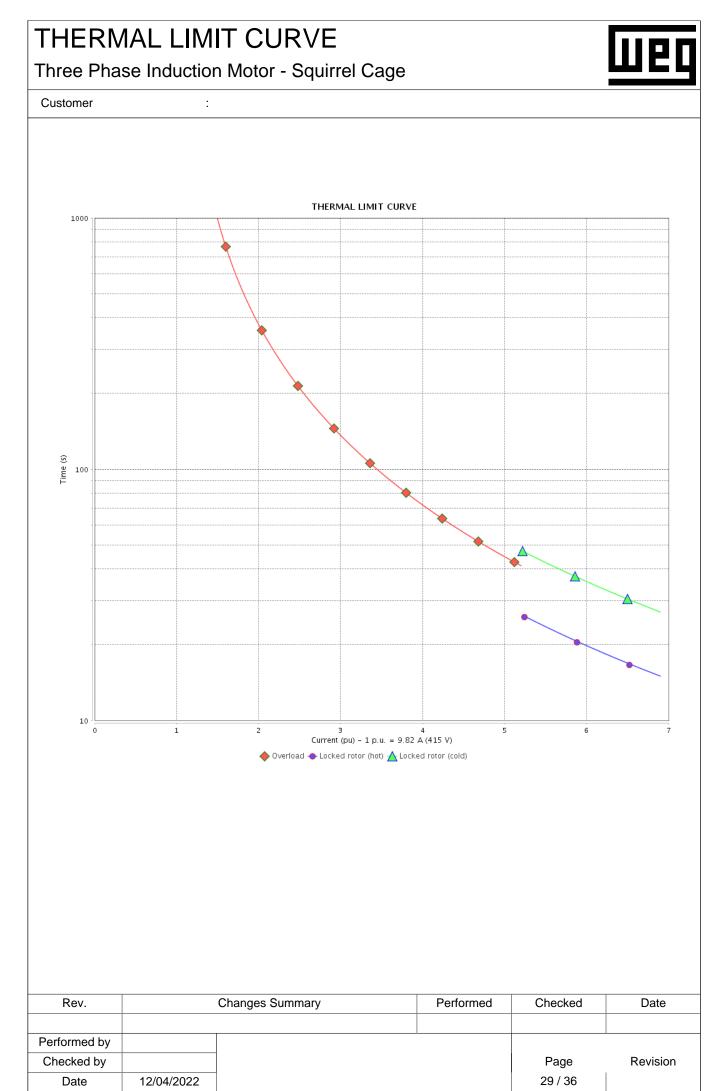
P

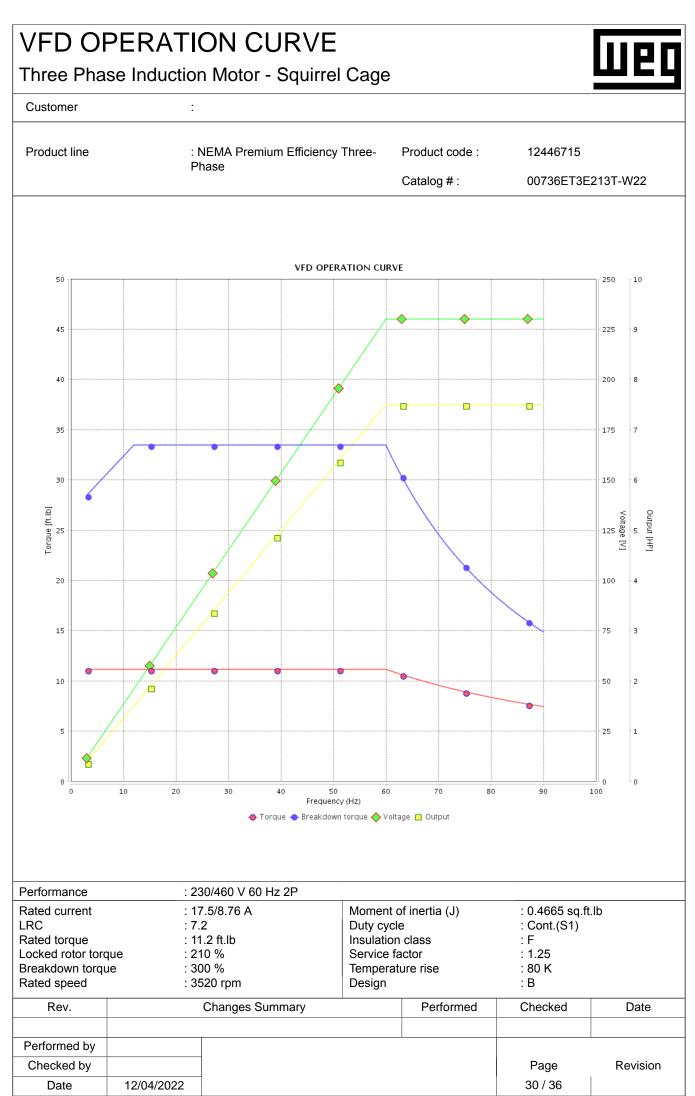

00736ET3E213T-W22

Performance	:	380 V 50 Hz 2P IE2				
Rated current LRC Rated torque Locked rotor torq Breakdown torqu Rated speed	que :	10.6 A 5.7 13.6 ft.lb 170 % 229 % 2895 rpm	Moment of inertia (J) Duty cycle Insulation class Service factor Temperature rise Design		: 0.4665 sq.ft : Cont.(S1) : F : 1.25 : 80 K : B	lb
Heating constant	t					
Cooling constant	t					
Rev.	Rev. Changes Summary			Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	12/04/2022				24 / 36	

THERMAL LIMIT CURVE							
Three Phase Induc	tion Motor - Squirrel Cage						
Customer	:						
Product line	: NEMA Premium Efficiency Three-	Product code :	12446715				

		nase	0	Catalog # :	00736ET3E2	212T_\//22
				atalog # .	00730E13E2	2131-1422
?erformance	: 4(00 V 50 Hz 2P IE2				
Rated current	: 1().2 A	Moment of	inertia (J)	: 0.4665 sq.ft.	lb
Rated current RC	: 10 : 6.).2 A 4	Duty cycle		: Cont.(S1)	lb
Rated current .RC Rated torque .ocked rotor torc	: 10 : 6. : 13 jue : 19	0.2 A 4 3.5 ft.lb 90 %	Duty cycle Insulation c Service fac	class tor	: Cont.(S1) : F : 1.25	lb
Rated current .RC Rated torque .ocked rotor toro Breakdown torqu	: 10 : 6. : 13 iue : 19 ie : 26	0.2 A 4 3.5 ft.lb 90 % 60 %	Duty cycle Insulation c Service fac Temperatur	class tor	: Cont.(S1) : F : 1.25 : 80 K	lb
Rated current RC Rated torque ocked rotor toro Breakdown torqu Rated speed	: 10 : 6. : 13 iue : 19 ie : 20 : 29	0.2 A 4 3.5 ft.lb 90 %	Duty cycle Insulation c Service fac	class tor	: Cont.(S1) : F : 1.25	lb
Rated current RC Rated torque ocked rotor toro Breakdown torqu Rated speed	: 10 : 6. : 13 :e : 19 :e : 20 : 29	0.2 A 4 3.5 ft.lb 90 % 60 %	Duty cycle Insulation c Service fac Temperatur	class tor	: Cont.(S1) : F : 1.25 : 80 K	Ib
Rated current .RC Rated torque .ocked rotor toro Breakdown torqu Rated speed Heating constant Cooling constant	: 10 : 6. : 13 :e : 19 :e : 20 : 29	0.2 A 4 3.5 ft.lb 90 % 60 % 905 rpm	Duty cycle Insulation c Service fac Temperatur	class tor re rise	: Cont.(S1) : F : 1.25 : 80 K : B	
Rated current RC Rated torque ocked rotor toro Breakdown torqu Rated speed	: 10 : 6. : 13 :e : 19 :e : 20 : 29	0.2 A 4 3.5 ft.lb 90 % 60 %	Duty cycle Insulation c Service fac Temperatur	class tor	: Cont.(S1) : F : 1.25 : 80 K	lb Date
Rated current .RC Rated torque .ocked rotor tord Breakdown torqu Rated speed Heating constant Cooling constant Rev.	: 10 : 6. : 13 :e : 19 :e : 20 : 29	0.2 A 4 3.5 ft.lb 90 % 60 % 905 rpm	Duty cycle Insulation c Service fac Temperatur	class tor re rise	: Cont.(S1) : F : 1.25 : 80 K : B	
Performance Rated current .RC Rated torque .ocked rotor torque .ocked by .ocked by	: 10 : 6. : 13 :e : 19 :e : 20 : 29	0.2 A 4 3.5 ft.lb 90 % 60 % 905 rpm	Duty cycle Insulation c Service fac Temperatur	class tor re rise	: Cont.(S1) : F : 1.25 : 80 K : B	

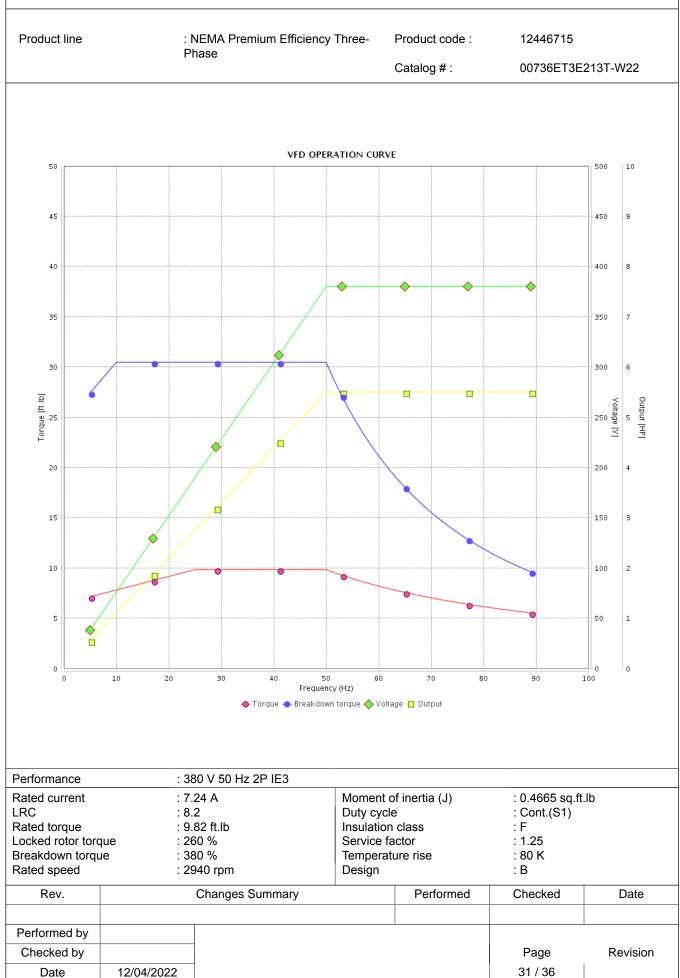

THERMAL LIMIT CURVE							
Three Phase Induc	tion Motor - Squirrel Cage)					
Customer	:						
Product line	: NEMA Premium Efficiency Three-	Product code :	12446715				


Catalog # :

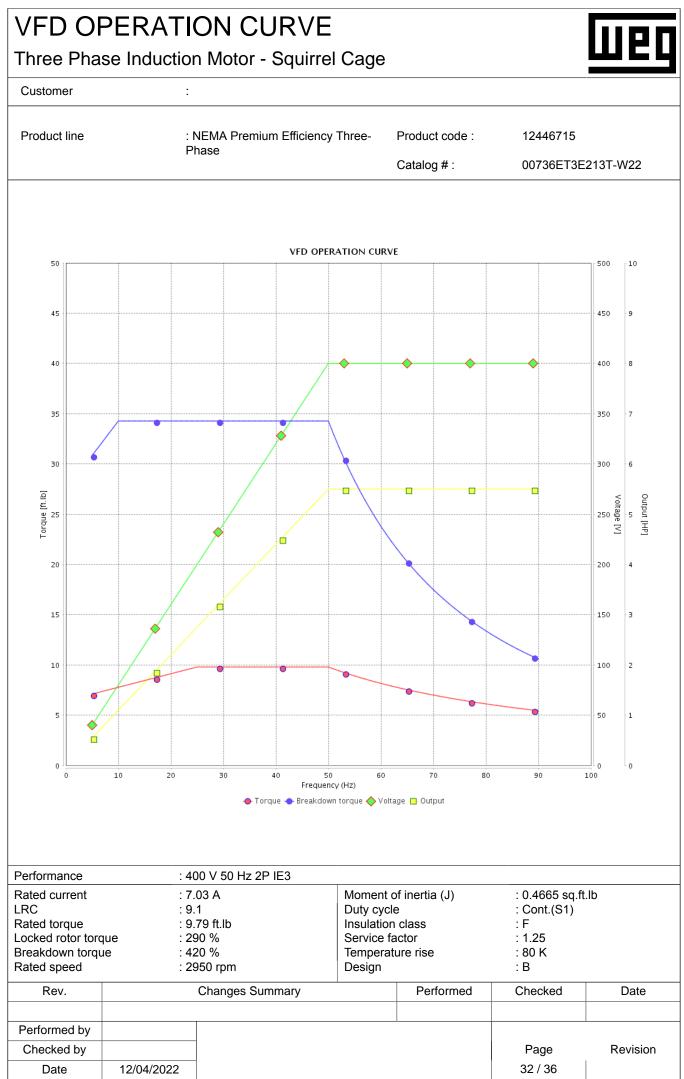
00736ET3E213T-W22

Phase

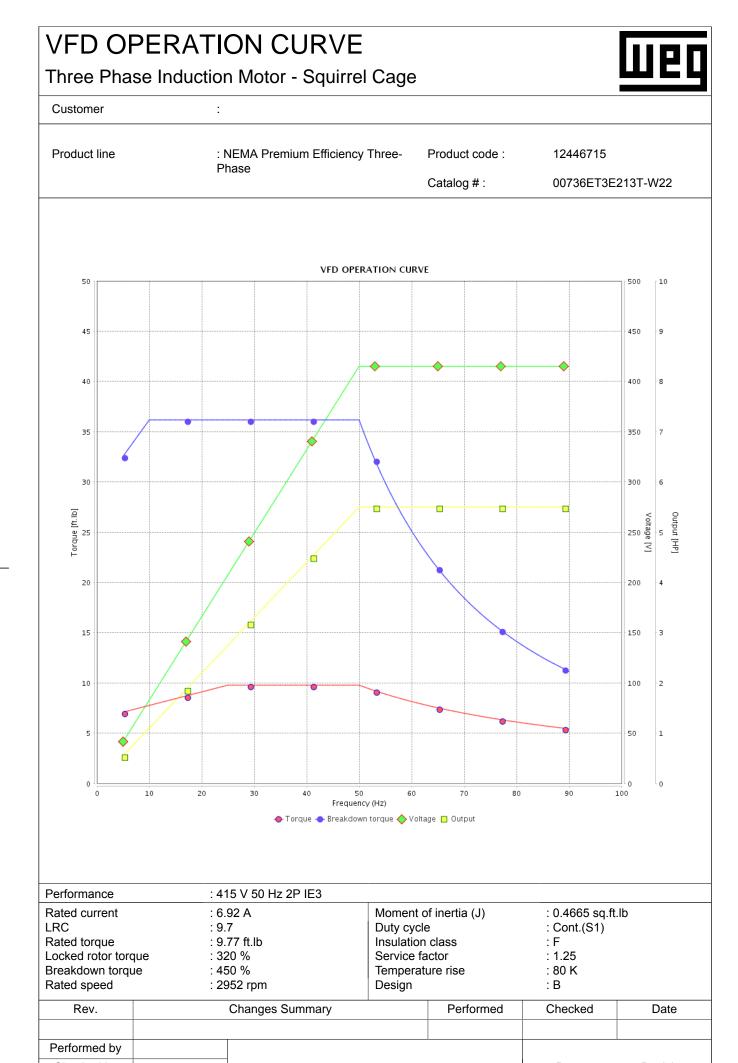
Performance	: 4	415 V 50 Hz 2P IE2				
Rated current: 9.82 ALRC: 6.9Rated torque: 13.5 ft.lbLocked rotor torque: 210 %Breakdown torque: 280 %Rated speed: 2915 rpm		3.9 13.5 ft.lb 210 % 280 %	Moment of inertia (J) Duty cycle Insulation class Service factor Temperature rise Design		: 0.4665 sq.ft.lb : Cont.(S1) : F : 1.25 : 80 K : B	
Heating constant						
Rev.	5			Performed	Checked	Date
Performed by Checked by					Paga	Revision
Date	12/04/2022	_			Page 28 / 36	REVISION


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

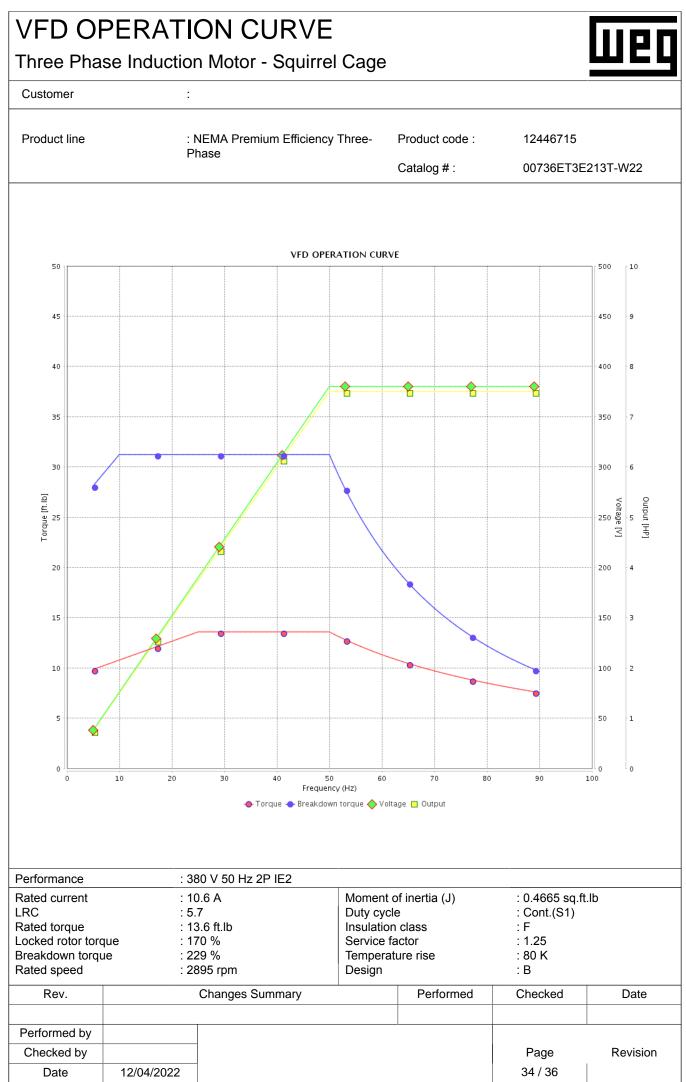
VFD OPERATION CURVE


:

Three Phase Induction Motor - Squirrel Cage


Customer

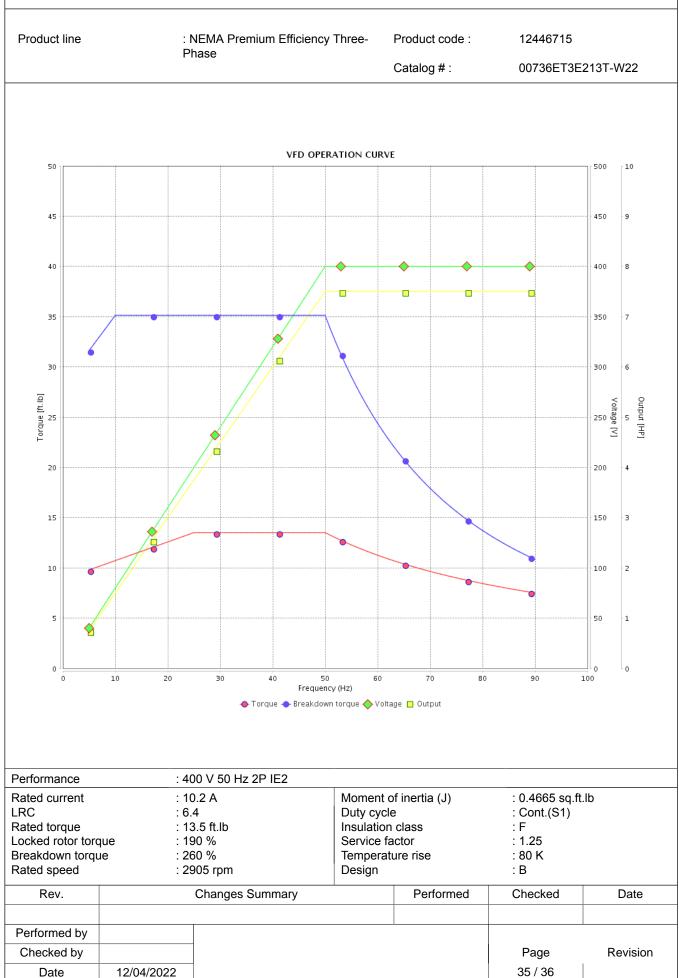
This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.



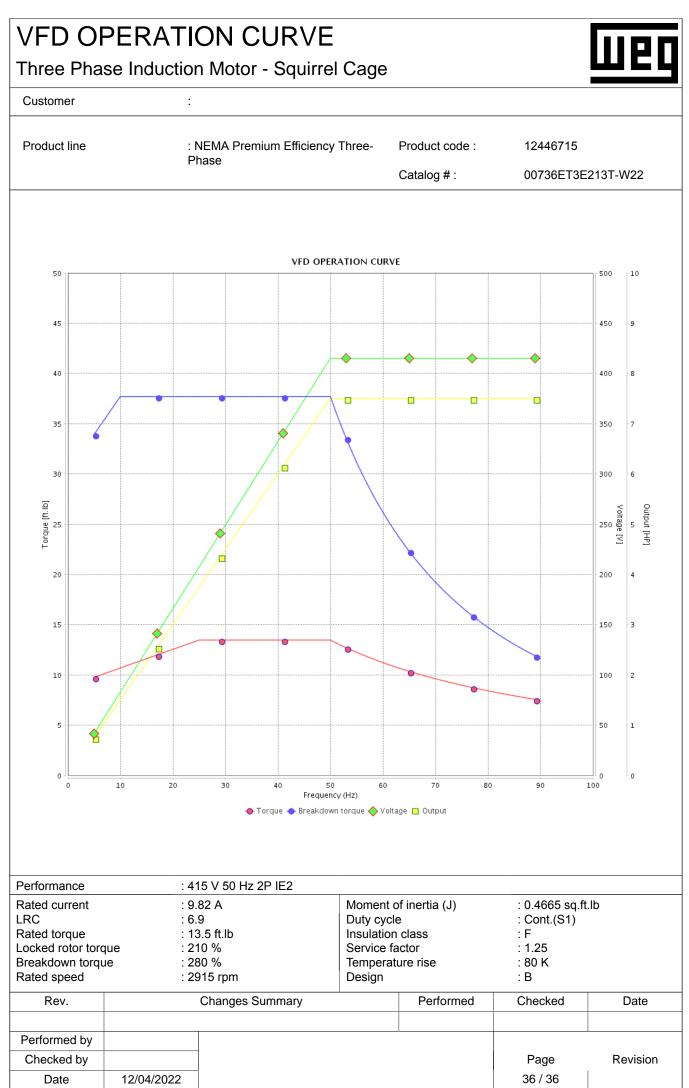
This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

 Checked by
 Page
 Revision

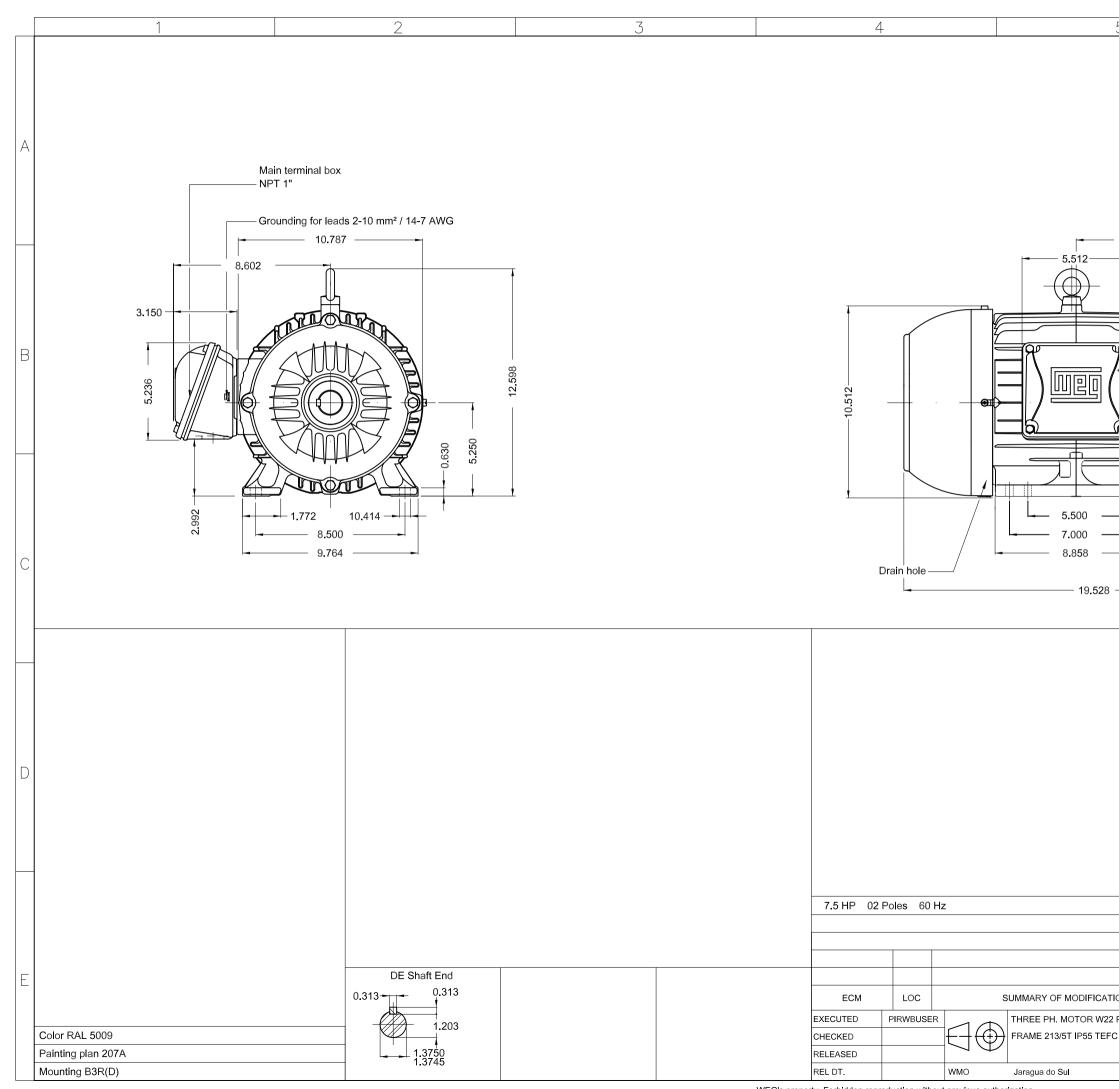
 Date
 12/04/2022
 33 / 36
 Image: State of the second sec



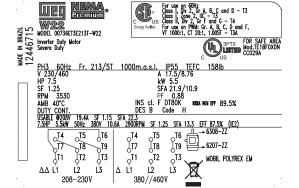
VFD OPERATION CURVE


Three Phase Induction Motor - Squirrel Cage

:


Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.



This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

WEG's property. Forbidden reproduction without previous authorization.

_						
5			6			
5		2.480 	6		A	Dimensions in inches
	EVECUTED			DATE		
IONS	EXECUTED	CHECKED	RELEASED	DATE	VER	
PREM. EFF.						
		PREV	EW			
0		WDD		Шеі		1E A3
Product	Engineering	SHEET	1 / 1			XME
	I		I			~ •

