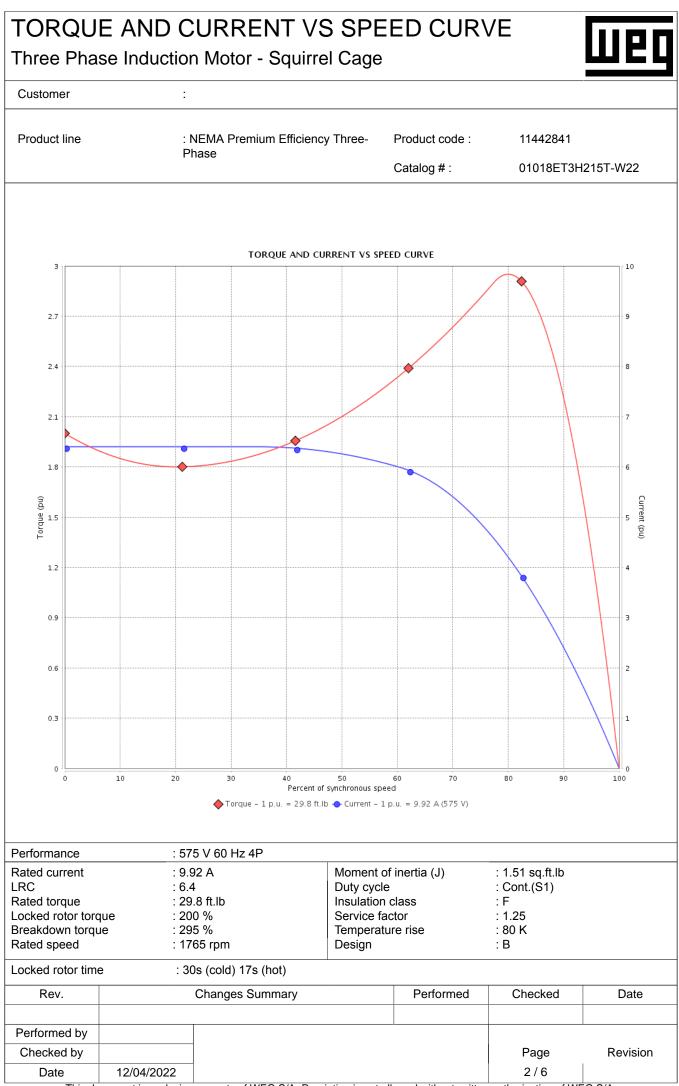
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

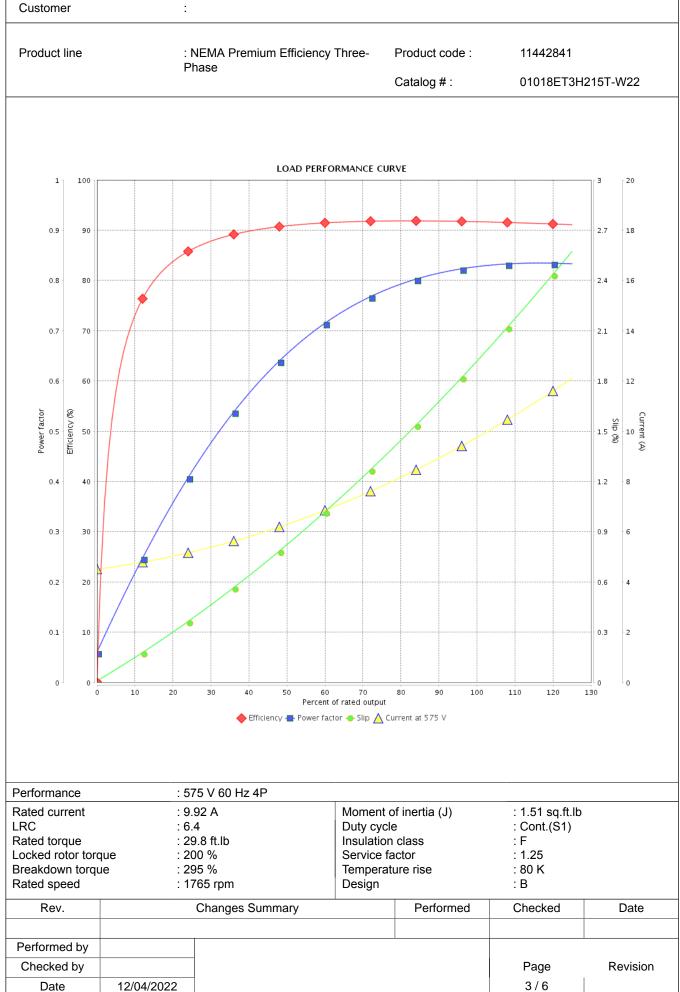

Customer

		: NEMA Premium Efficiency T Phase					11442841		
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torq Breakdown torqu Insulation class Service factor		: 4 : 60 H : 575 : 9.92 : 63.5 : 6.4 : 4.52	HP (7.5 kW Hz 2 A 5 A ((Code H) 2 A 5 rpm 4 % 3 ft.lb % %	/)	Locked Temper Duty cy Ambier Altitude Protect Cooling Mountin Rotatio Noise k Starting	t temperature ion degree method ng n ¹	01018ET3F : 30s (cold) : 80 K : Cont.(S1) : -20°C to - : 1000 m.a : IP55 : IC411 - Tl : F-1 : Both (CW : 58.0 dB(A : Direct On : 176 lb) 17s (hot) +40°C .s.l. EFC (and CCW)	
Moment of inertia	a (J)		l sq.ft.lb						
Output	25%	50%	75%	100%	Foundatio				
Efficiency (%) Power Factor	90.8 0.40	91.0 0.66	91.7 0.77	91.7 0.83	Max. trac Max. com		: 407 lb : 583 lb		
Sealing Lubrication interv Lubricant amoun		:	-	'Ring -		V'Ring -			
		:		Mol	bil Polyrex	EM			
Lubricant type Notes This revision repla must be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v manufacturing pro (4) At 100% of full	ed. lotor from th Im and with weight subje ocess.	e shaft e toleranc	end. e of +3dB(ne, which A).	These ar	e average values	based on tests w		
This revision replanust be eliminate 1) Looking the m 2) Measured at 1 3) Approximate w	ed. lotor from th Im and with weight subje ocess.	e shaft e toleranc ct to cha	end. e of +3dB(one, which A).	These ar	e average values			
This revision replanust be eliminate 1) Looking the m 2) Measured at 1 3) Approximate v nanufacturing pro 4) At 100% of full Rev.	ed. lotor from th Im and with weight subje ocess.	e shaft e toleranc ct to cha	end. e of +3dB(inges after	one, which A).	These ar	e average values	ne tolerances stipu	lated in NEMA	
Notes This revision replanust be eliminate 1) Looking the m 2) Measured at 1 3) Approximate v manufacturing pro 4) At 100% of full	ed. lotor from th Im and with weight subje ocess.	e shaft e toleranc ct to cha	end. e of +3dB(inges after	one, which A).	These ar	e average values	ne tolerances stipu	lated in NEMA	

Шед

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Subject to change without notice


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

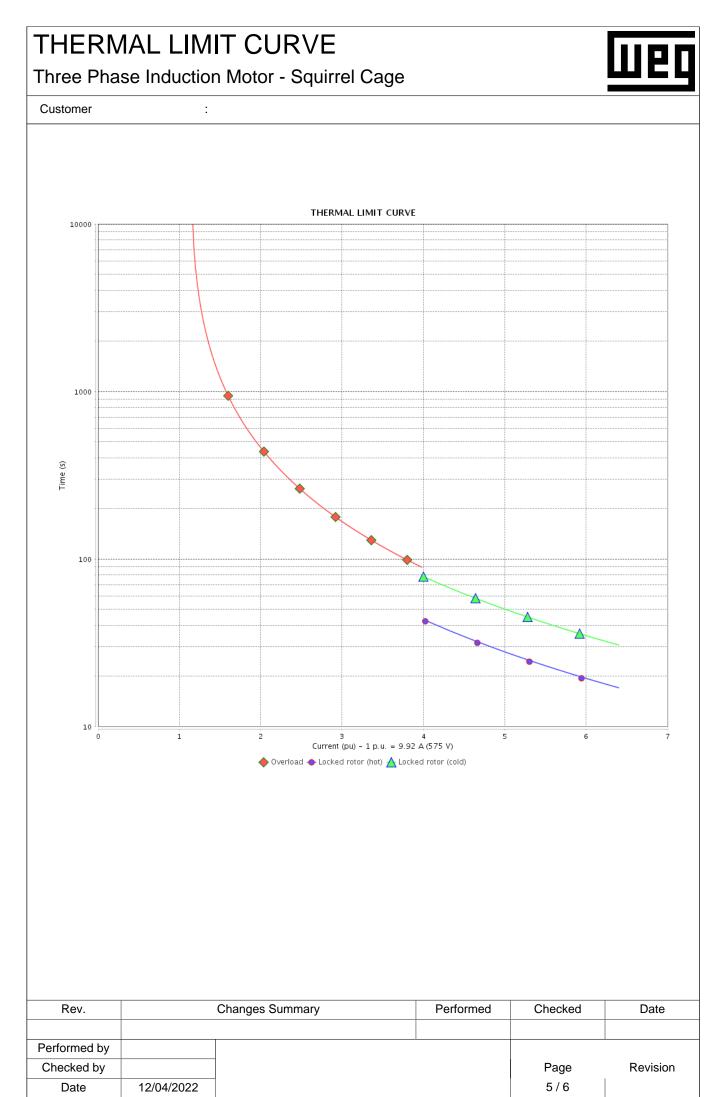
Subject to change without notice

LOAD PERFORMANCE CURVE

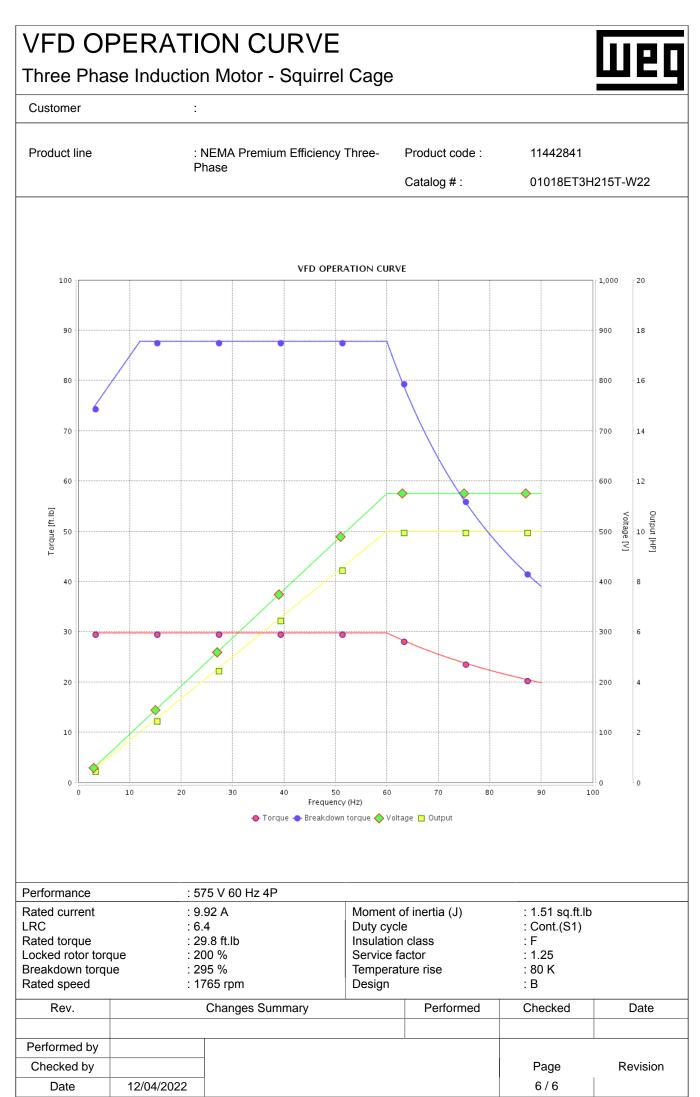
Three Phase Induction Motor - Squirrel Cage

Customer

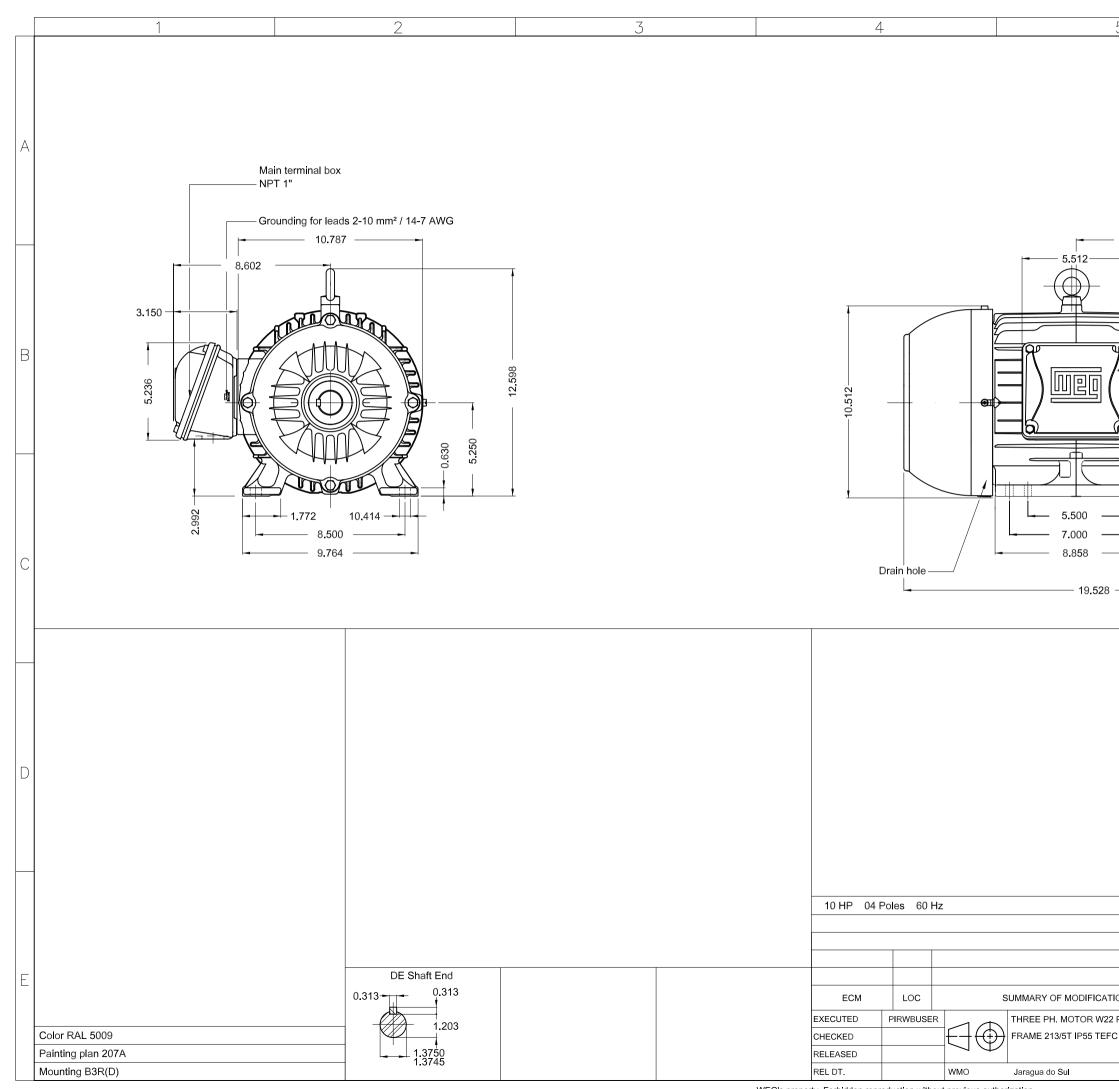
This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.


Subject to change without notice

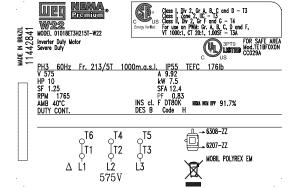
THERMAL LIMIT CURVE
Three Phase Induction Motor - Squirrel Cage
Customer :



Product line	1 :	NEMA Premium Efficiency	Three- Product code : Catalog # :		11442841	
	Pi	nase			01018ET3H215T-W22	
Performance	: 575 V 60 Hz 4P : 9.92 A		Moment of inertia (1)		. 4 54 ag ft lb	
Rated current LRC	: 9.92 A : 6.4		Moment of inertia (J) Duty cycle		: 1.51 sq.ft.lb : Cont.(S1)	
Rated torque	Rated torque : 29.8 ft.lb		Insulation	class	: F	
Locked rotor torque : 200 % Breakdown torque : 295 %		Service factor Temperature rise		: 1.25 : 80 K		
Rated speed		765 rpm	Design		: B	
Heating constant	t					
Cooling constant					· · · · · · · · · · · · · · · · · · ·	
Rev.		Changes Summary		Performed	Checked	Date
Performed by					Daga	Devision
Checked by Date	12/04/2022				Page 4 / 6	Revision
Date	12/04/2022				4/0	


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice



This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

WEG's property. Forbidden reproduction without previous authorization.

5			6			
7.008		2.480 3.375 Drain hole				
					A	Dimensions in inches
IONS	EXECUTED	CHECKED	RELEASED	DATE	VER	
PREM. EFF.		PREVI	<u> </u>			
C		WDD		ШВ		A3
Produc	t Engineering		1 / 1			XME
	- 1		,			~

