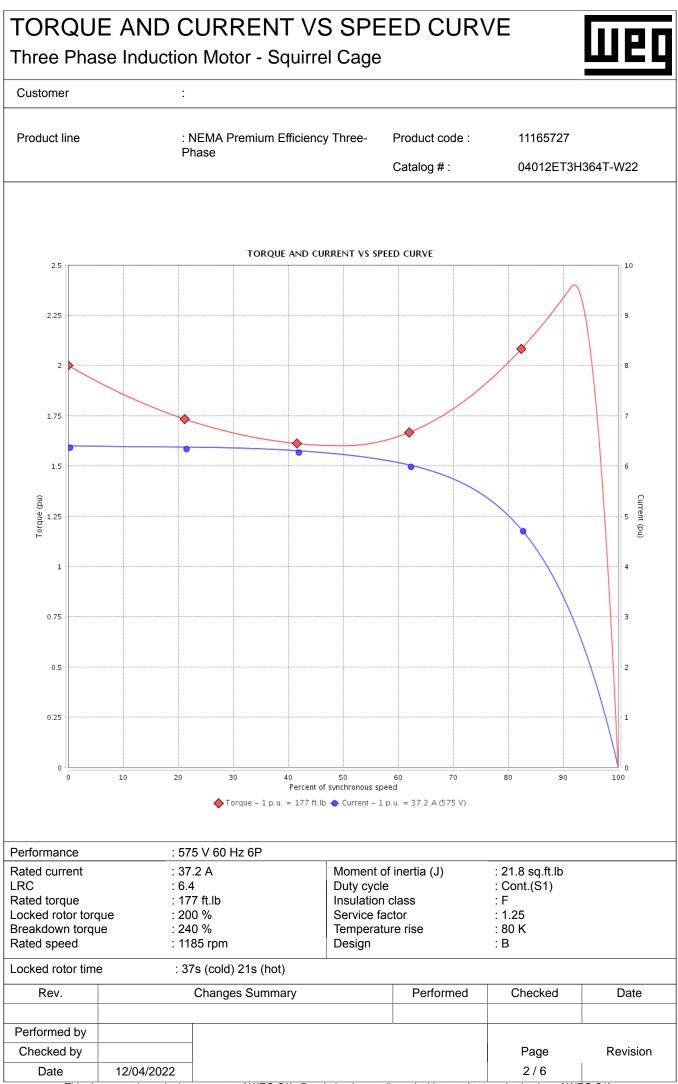
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

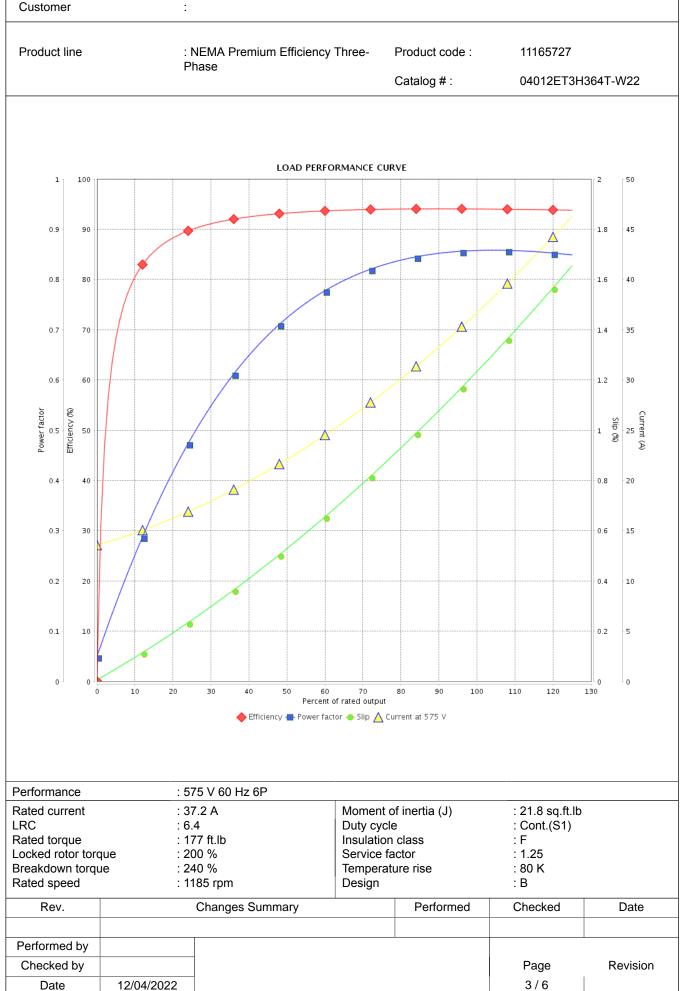

:

Customer

Product line		: NEN Phas		n Efficiency T	hree-	Product code :	11165727		
		FildS	C			Catalog # :	04012ET3H	1364T-W22	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor torque Breakdown torque Insulation class Service factor		: 364/5T : 40 HP (30 kW) : 6 : 60 Hz : 575 V : 37.2 A : 238 A : 6.4x(Code G) : 13.6 A : 1185 rpm : 1.25 % : 177 ft.lb : 200 % : 240 % : F			Locked rotor time Temperature rise Duty cycle Ambient temperature Altitude Protection degree Cooling method Mounting Rotation ¹ Noise level ² Starting method Approx. weight ³		: 80 K : Cont.(S1) : -20°C to : 1000 m.a : IP55 : IC411 - T : F-1 : Both (CW : 66.0 dB(A	: 37s (cold) 21s (hot) : 80 K : Cont.(S1) : -20°C to +40°C : 1000 m.a.s.l. : IP55 : IC411 - TEFC : F-1 : Both (CW and CCW) : 66.0 dB(A) : Direct On Line	
Moment of inerti Design	a (J)	: 1.25 : 21.8 : B	3 sq.ft.lb						
Dutput	25%	50%	75%	100%	Foundatio	on loads			
- Efficiency (%)	93.1	93.6	93.6	94.1	Max. trac	tion	: 1010 lb		
ower Factor	0.47	0.73	0.82	0.86	Max. com	pression	: 1902 lb		
Sealing Lubrication inter Lubricant amour Lubricant type Iotes			17	Seal 000 h 7 g Mot	bil Polyrex	WSeal 17000 h 27 g EM			
This revision repl nust be eliminate 1) Looking the m 2) Measured at 3) Approximate nanufacturing pr 4) At 100% of fu	ed. notor from the 1m and with weight subje ocess.	e shaft e toleranc	end. e of +3dB(/				s based on tests w he tolerances stip		
Rev.		Ch	anges Sum	marv		Performed	Checked	Date	
			angeo oun			renonneu			
I									
Performed by									
Performed by Checked by							Page	Revision	
Performed by Checked by Date	12/04/202	22					Page 1 / 6	Revision	

Шeq

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.



This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

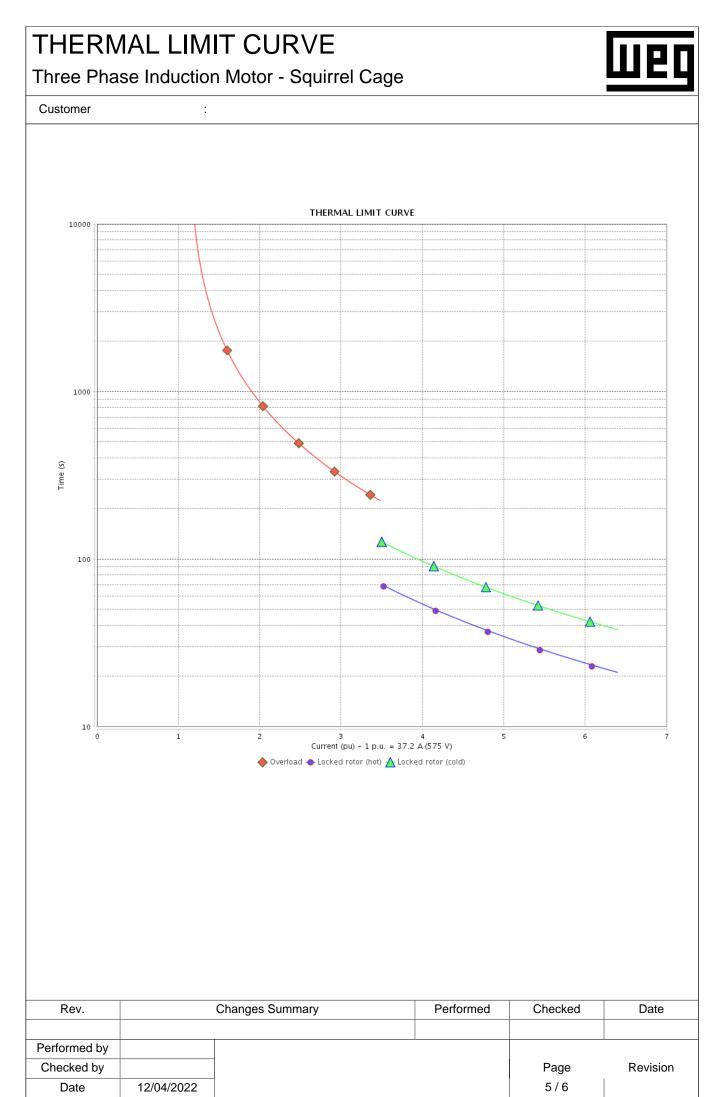
LOAD PERFORMANCE CURVE

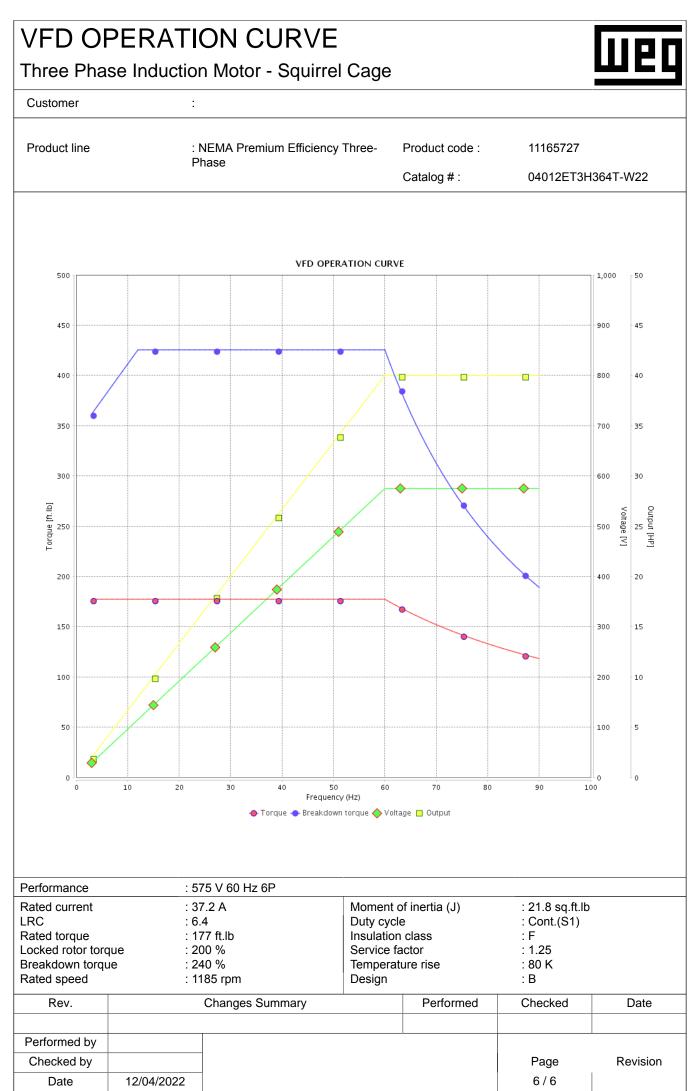
Three Phase Induction Motor - Squirrel Cage

Customer

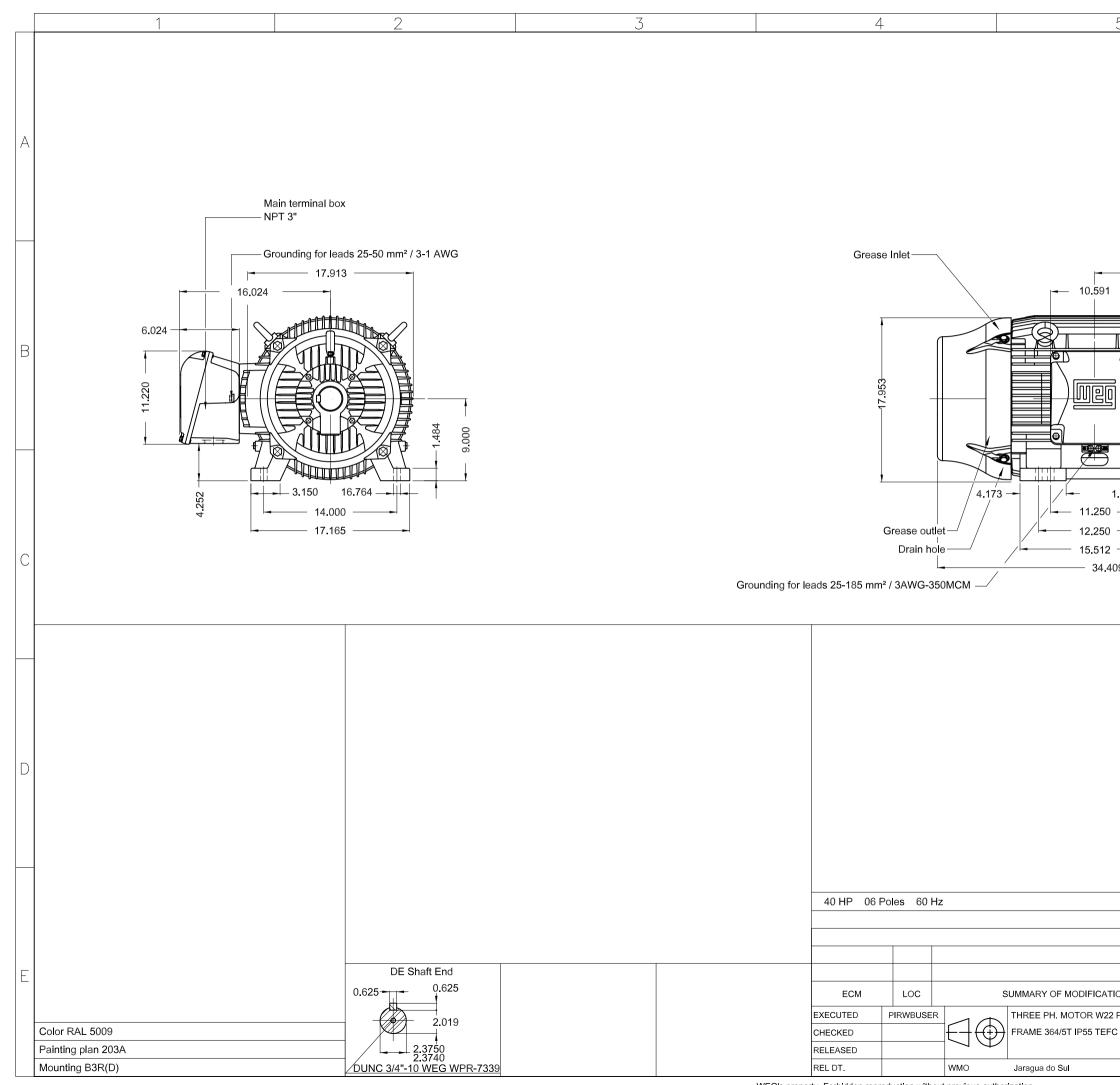
This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

THERMAL LIMIT CURVE	
---------------------	--


:


Three Phase Induction Motor - Squirrel Cage

Customer


	Phase	ee- Product code :	11165727 04012ET3H364T-W22	
	Fildse	Catalog # :		
	: 575 V 60 Hz 6P			
ted current	: 37.2 A Mo	oment of inertia (J)	: 21.8 sq.ft.lb	
ted current C ted torque	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins	ity cycle sulation class	: Cont.(S1) : F	
ted current C ted torque cked rotor torque	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins : 200 % Se	uty cycle sulation class ervice factor	: Cont.(S1) : F : 1.25	
ted current C ted torque cked rotor torque eakdown torque	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins : 200 % Se : 240 % Te	ity cycle sulation class	: Cont.(S1) : F	
ted current C ted torque cked rotor torque eakdown torque ted speed	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins : 200 % Se : 240 % Te	uty cycle sulation class ervice factor mperature rise	: Cont.(S1) : F : 1.25 : 80 K	
ted current C ted torque cked rotor torque eakdown torque ted speed ating constant	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins : 200 % Se : 240 % Te	uty cycle sulation class ervice factor mperature rise	: Cont.(S1) : F : 1.25 : 80 K	
ted current C ted torque cked rotor torque eakdown torque ted speed ating constant	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins : 200 % Se : 240 % Te	uty cycle sulation class ervice factor mperature rise	: Cont.(S1) : F : 1.25 : 80 K	Date
ted current C ted torque cked rotor torque eakdown torque ted speed ating constant oling constant Rev.	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins : 200 % Se : 240 % Te : 1185 rpm De	ity cycle sulation class ervice factor mperature rise esign	: Cont.(S1) : F : 1.25 : 80 K : B	Date
erformance ated current C ated torque cked rotor torque eakdown torque ated speed eating constant poling constant Rev. erformed by Checked by	: 37.2 A Mo : 6.4 Du : 177 ft.lb Ins : 200 % Se : 240 % Te : 1185 rpm De	ity cycle sulation class ervice factor mperature rise esign	: Cont.(S1) : F : 1.25 : 80 K : B	Date

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A. Subject to change without notice

WEG's property. Forbidden reproduction without previous authorization.

11.988 Grease Inlet 4.331 634 5.874 634 5.875 09 Frease outlet 09 Drein hole 09 A A A 00 EXECUTED CHECKED RELEASED DATE VER PREM EFF. PREVIEW Interview	5			6		
IONS EXECUTED CHECKED RELEASED DATE VER	11.988 11.988 1.634 5.875	Gre	- 4.331 			
		EXECUTED	CHECKED	RELEASED	DATE	VER
			PREVI	EW	1100	
			WDD		ШĽ	
Product Engineering SHEET 1 / 1	Product	Engineering	SHEET	1 / 1		