DATA SHEET

Three Phase Induction Motor - Squirrel Cage

Customer

Product line : NEMA Premium Efficiency Three-Product code:

Catalog #: 07536ET3E365TS-W22

11355296

Frame : 364/5TS Cooling method : IC411 - TEFC

Insulation class Mounting : F-1

Duty cycle : Cont.(S1) Rotation¹ : Both (CW and CCW)

: -20°C to +40°C Ambient temperature Starting method : Direct On Line

: 1000 m.a.s.l. Approx. weight³ : 857 lb Altitude : IP55 : 11.9 sq.ft.lb Protection degree Moment of inertia (J)

Protection degre	е	: IP55 : B		Womer	it of inertia (J)	: 1	1.9 sq.π.ib	
Design		. Б						
Output [HP]		75	60	60	60	75	75	75
Poles		2	2	2	2	2	2	2
Frequency [Hz]		60	50	50	50	50	50	50
Rated voltage [V]		230/460	380	400	415	380	400	415
Rated current [A]		164/81.9	80.8	78.5	75.7	100	94.8	91.4
L. R. Amperes [A]		1097/549	525	557	598	520	559	594
LRC [A]		6.7x(Code	6.5x(Code	7.1x(Code H)	7.9x(Code J)	5.2x(Code E)	5.9x(Code F)	6.5x(Code
		G)	G)					G)
No load current [A		40.0/20.0	19.0	20.0	21.5	19.0	20.0	21.5
Rated speed [RPN	/ 1]	3555	2955	2960	2965	2930	2945	2950
Slip [%]		1.25	1.50	1.33	1.17	2.33	1.83	1.67
Rated torque [ft.lb]		111	107	106	106	134	134	134
Locked rotor torque [%]		200	210	229	250	160	175	190
Breakdown torque	[%]	250	260	390	310	200	220	240
Service factor		1.25	1.00	1.00	1.00	1.00	1.00	1.00
Temperature rise		80 K	80 K	80 K	80 K	105 K	105 K	105 K
Locked rotor time		18s (cold)	39s (cold)	39s (cold)	37s (cold)	12s (cold)	12s (cold)	12s (cold)
		10s (hot)	22s (hot)	22s (hot)	21s (hot)	7s (hot)	7s (hot)	7s (hot)
Noise level ²		79.0 dB(A)	74.0 dB(A)	74.0 dB(A)	74.0 dB(A)	74.0 dB(A)	74.0 dB(A)	74.0 dB(A)
	25%	92.2	89.7	90.4	90.8	92.7	92.2	93.4
Efficiency (%)	50%	92.4	91.2	91.5	91.8	92.4	92.4	93.0
Efficiency (70)	75%	93.6	92.5	93.0	93.1	93.0	93.0	93.6
	100%	93.6	94.0	94.0	94.0	92.4	93.0	93.0
	25%	0.60	0.55	0.52	0.49	0.66	0.63	0.60
Power Factor	50%	0.83	0.75	0.72	0.70	0.86	0.84	0.83
FOWEI FACIOI	75%	0.88	0.85	0.83	0.82	0.89	0.89	0.88
	100%	0.90	0.90	0.88	0.88	0.90	0.90	0.90

Drive end Non drive end Foundation loads

Bearing type 6314 C3 6314 C3 Max. traction : 668 lb Sealing WSeal WSeal : 1525 lb Max. compression

Lubrication interval 4000 h 4000 h 27 g Lubricant amount 27 g Lubricant type Mobil Polyrex EM

Notes

USABLE @208V 181A SF 1.10 SFA 199A

This revision replaces and cancel the previous one, which must be eliminated.

- (1) Looking the motor from the shaft end.
- (2) Measured at 1m and with tolerance of +3dB(A).
- (3) Approximate weight subject to changes after manufacturing process.
- (4) At 100% of full load.

These are average values based on tests with sinusoidal power supply, subject to the tolerances stipulated in NEMA MG-1.

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			1 / 37	

DATA SHEET

Three Phase Induction Motor - Squirrel Cage

_	
Customer	
Customer	

Thermal protection

		•		
ID	Application	Туре	Quantity	Sensing Temperature
1	Winding	Thermistor - 2 wires	1 x Phase	155 °C

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			2/37	

Revision

Page 3/37

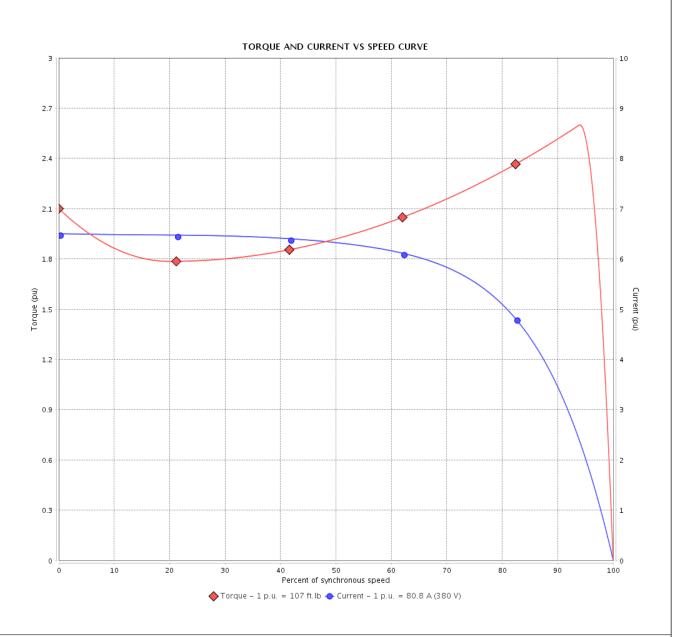
Three Phase Induction Motor - Squirrel Cage Customer Product line : NEMA Premium Efficiency Three-Product code: 11355296 Catalog #: 07536ET3E365TS-W22 TORQUE AND CURRENT VS SPEED CURVE 2.7 2.1 1.8 Current Torque (pu) 1.2 0.6 0.3 Percent of synchronous speed ◆ Torque - 1 p.u. = 111 ft.lb ◆ Current - 1 p.u. = 81.9 A (460 V) Performance : 230/460 V 60 Hz 2P Rated current : 164/81.9 A Moment of inertia (J) : 11.9 sq.ft.lb **LRC** : 6.7 Duty cycle : Cont.(S1) Insulation class : F Rated torque : 111 ft.lb Locked rotor torque : 200 % Service factor : 1.25 Breakdown torque : 250 % Temperature rise : 80 K Rated speed : 3555 rpm Design : B Locked rotor time : 18s (cold) 10s (hot) Rev. Performed Checked Date **Changes Summary**

Performed by Checked by

Date

13/04/2022

Three Phase Induction Motor - Squirrel Cage


Customer :

Product line : NEMA Premium Efficiency Three- Produc

Phase

Product code: 11355296

Catalog #: 07536ET3E365TS-W22

Performance : 380 V 50 Hz 2P IE3 Rated current : 80.8 A Moment of inertia (J) : 11.9 sq.ft.lb **LRC** : 6.5 Duty cycle : Cont.(S1) : 107 ft.lb Insulation class Rated torque : F Locked rotor torque : 210 % Service factor : 1.00 Breakdown torque : 260 % Temperature rise : 80 K Rated speed : 2955 rpm Design : B

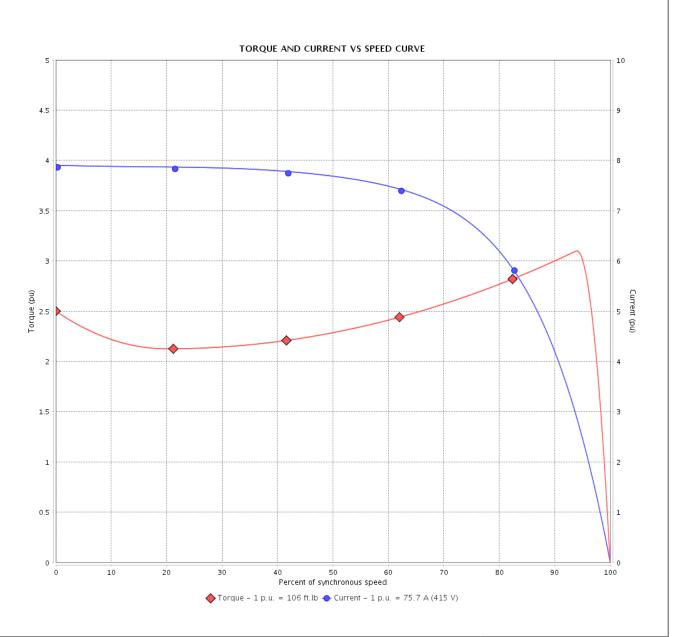
Locked rotor time : 39s (cold) 22s (hot)

Rev.	Changes Summary		Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			4 / 37	

Three Phase Induction Motor - Squirrel Cage Customer Product line : NEMA Premium Efficiency Three-Product code: 11355296 Catalog #: 07536ET3E365TS-W22 TORQUE AND CURRENT VS SPEED CURVE 4.5 3.5 Torque (pu) Current 0.5 Percent of synchronous speed ◆ Torque - 1 p.u. = 106 ft.lb ◆ Current - 1 p.u. = 78.5 A (400 V) Performance : 400 V 50 Hz 2P IE3 Rated current : 78.5 A Moment of inertia (J) : 11.9 sq.ft.lb **LRC** : 7.1 Duty cycle : Cont.(S1) : 106 ft.lb Insulation class : F Rated torque : 229 % : 1.00 Locked rotor torque Service factor : 390 % : 80 K Breakdown torque Temperature rise Rated speed : 2960 rpm : B Design

Locked rotor time	: 39	9s (cold) 22s (hot)			
Rev.		Changes Summary Performed		Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			5 / 37	

Three Phase Induction Motor - Squirrel Cage



Customer :

Product line : NEMA Premium Efficiency Three- Product code : 11355296

Phase

Catalog #: 07536ET3E365TS-W22

Performance	: 415 V 50 Hz 2P IE3		
Rated current	: 75.7 A	Moment of inertia (J)	: 11.9 sq.ft.lb
LRC	: 7.9	Duty cycle	: Cont.(S1)
Rated torque	: 106 ft.lb	Insulation class	: F
Locked rotor torque	: 250 %	Service factor	: 1.00
Breakdown torque	: 310 %	Temperature rise	: 80 K
Rated speed	: 2965 rpm	Design	: B
Locked roter time	: 37s (cold) 21s (bot)	I	

Locked rotor time : 37s (cold) 21s (hot)

Rev.	Changes Summary F		Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			6 / 37	

Revision

Page

7 / 37

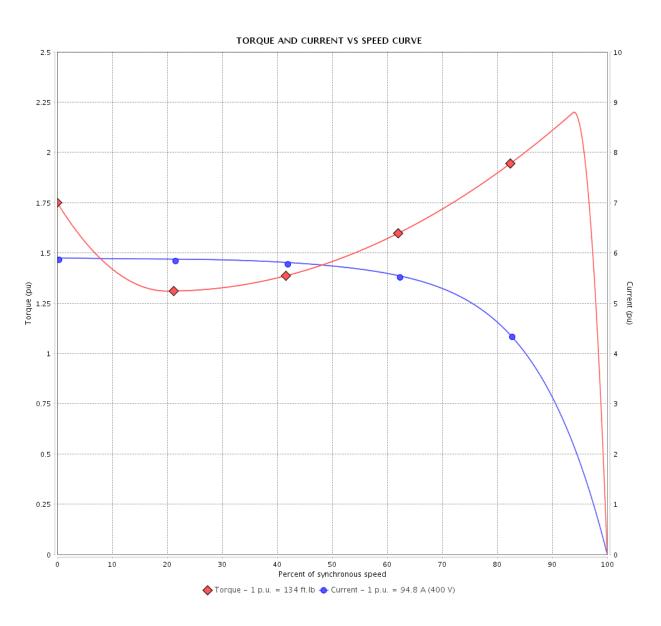
Three Phase Induction Motor - Squirrel Cage Customer Product line : NEMA Premium Efficiency Three-Product code: 11355296 Catalog #: 07536ET3E365TS-W22 TORQUE AND CURRENT VS SPEED CURVE 2.25 1.75 1.5 (pd) 1.25 Current 0.5 0.25 Percent of synchronous speed ◆ Torque - 1 p.u. = 134 ft.lb ◆ Current - 1 p.u. = 100 A (380 V) Performance : 380 V 50 Hz 2P IE1 Rated current : 100 A Moment of inertia (J) : 11.9 sq.ft.lb **LRC** : 5.2 Duty cycle : Cont.(S1) Insulation class : F Rated torque : 134 ft.lb : 160 % Locked rotor torque Service factor : 1.00 : 105 K Breakdown torque : 200 % Temperature rise Rated speed : 2930 rpm Design : B Locked rotor time : 12s (cold) 7s (hot) Rev. **Changes Summary** Performed Checked Date

Performed by Checked by

Date

13/04/2022

Three Phase Induction Motor - Squirrel Cage


Customer :

Product line : NEMA Premium Efficiency Three- Product

Phase

Product code: 11355296

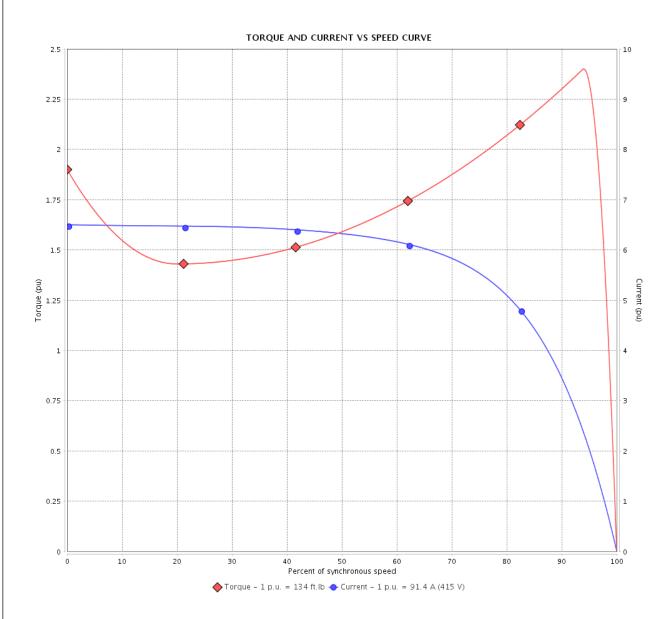
Catalog #: 07536ET3E365TS-W22

Performance : 400 V 50 Hz 2P IE1 Rated current : 94.8 A Moment of inertia (J) : 11.9 sq.ft.lb **LRC** : 5.9 Duty cycle : Cont.(S1) Insulation class Rated torque : 134 ft.lb : F Service factor Locked rotor torque : 175 % : 1.00 Breakdown torque : 220 % Temperature rise : 105 K Rated speed : 2945 rpm Design : B

Locked rotor time : 12s (cold) 7s (hot)

Rev.	Changes Summary		Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			8 / 37	

Three Phase Induction Motor - Squirrel Cage



Customer :

Product line : NEMA Premium Efficiency Three- Product code : 11355296

ase

Catalog #: 07536ET3E365TS-W22

Performance	: 415 V 50 Hz 2P IE1		
Rated current	: 91.4 A	Moment of inertia (J)	: 11.9 sq.ft.lb
LRC	: 6.5	Duty cycle	: Cont.(S1)
Rated torque	: 134 ft.lb	Insulation class	: F
Locked rotor torque	: 190 %	Service factor	: 1.00
Breakdown torque	: 240 %	Temperature rise	: 105 K
Rated speed	: 2950 rpm	Design	: B

Locked rotor time : 12s (cold) 7s (hot)

		, , , ,			
Rev.	Changes Summary		Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			9 / 37	

Three Phase Induction Motor - Squirrel Cage

Revision

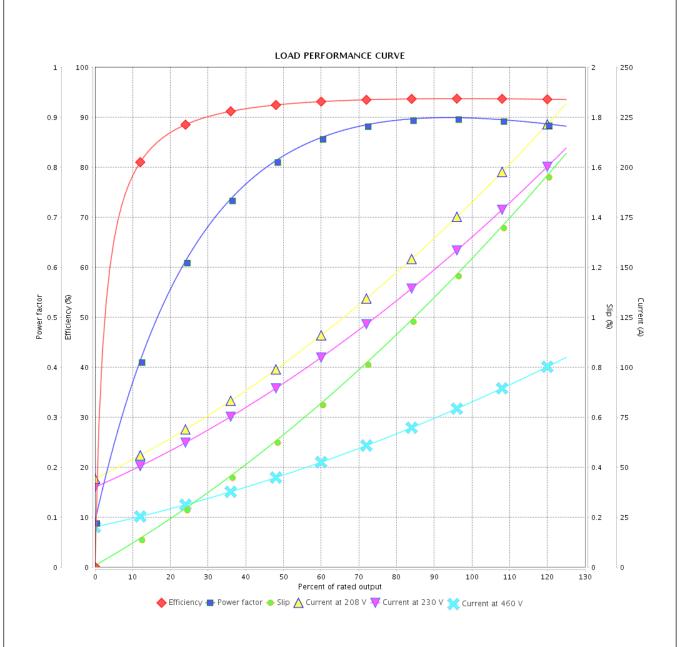
Page

10/37

Customer :

Checked by

Date


13/04/2022

Product line : NEMA Premium Efficiency Three- Produc

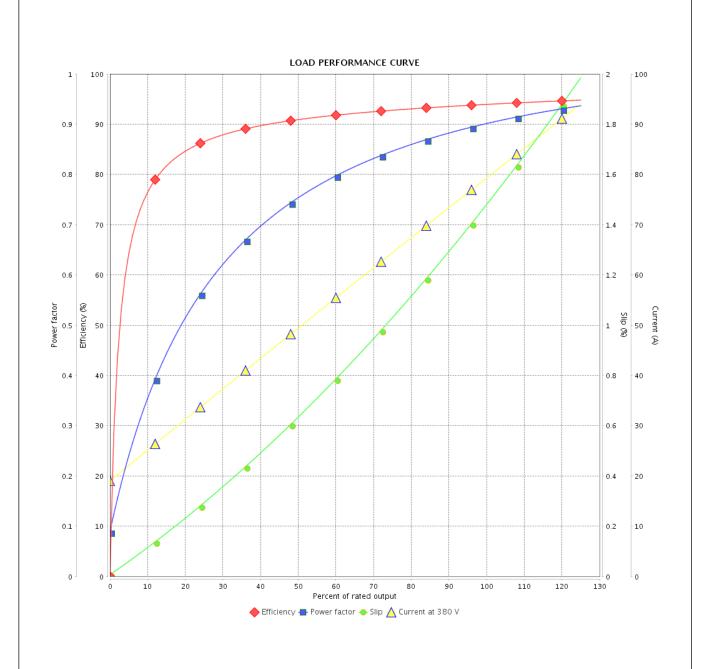
Phase

Product code: 11355296

Catalog #: 07536ET3E365TS-W22

Performance	: 23	30/460 V 60 Hz 2P				
Rated current LRC Rated torque Locked rotor tord Breakdown torqu Rated speed	: 6. : 1' ue : 20 e : 2!	64/81.9 A .7 11 ft.lb 00 % 50 % 555 rpm	Moment of Duty cycle Insulation Service fa Temperate Design	class ctor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.25 : 80 K : B	
Rev.		Changes Summary		Performed	Checked	Date
Performed by						

Three Phase Induction Motor - Squirrel Cage



Customer :

Product line : NEMA Premium Efficiency Three- Product code : 11355296

Phase

Catalog #: 07536ET3E365TS-W22

Performance	::	380 V 50 Hz 2P IE3				
Rated current	ed current : 80.8 A		Moment o	Moment of inertia (J)		
LRC	: (: 6.5 Duty cycle)	: Cont.(S1)	
Rated torque	:	107 ft.lb	Insulation	class	: F	
Locked rotor torqu	ie ::	210 %	Service fa	ctor	: 1.00	
Breakdown torque	wn torque : 260 % Temperature rise		ıre rise	: 80 K		
Rated speed		2955 rpm	Design		: B	
Rev.		Changes Summa	ry	Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	13/04/2022				11 / 37	

Three Phase Induction Motor - Squirrel Cage

Revision

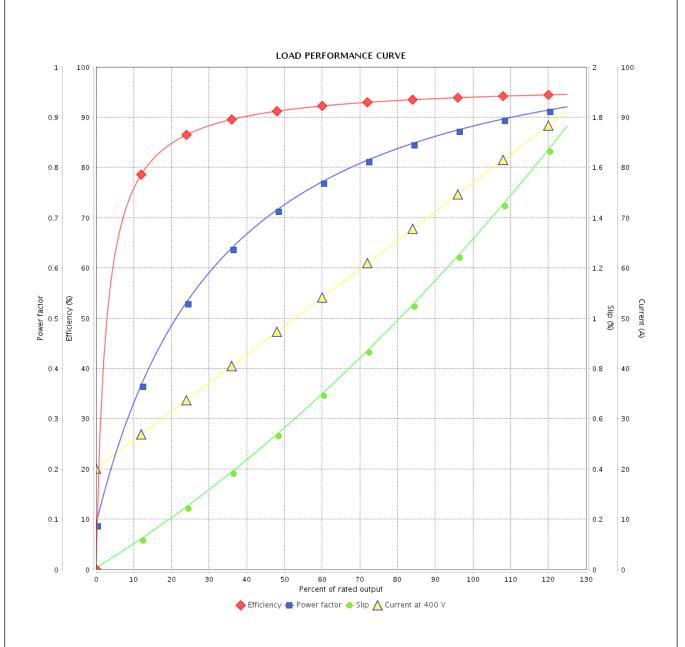
Page

12/37

Customer :

Checked by

Date


13/04/2022

Product line : NEMA Premium Efficiency Three- Product code :

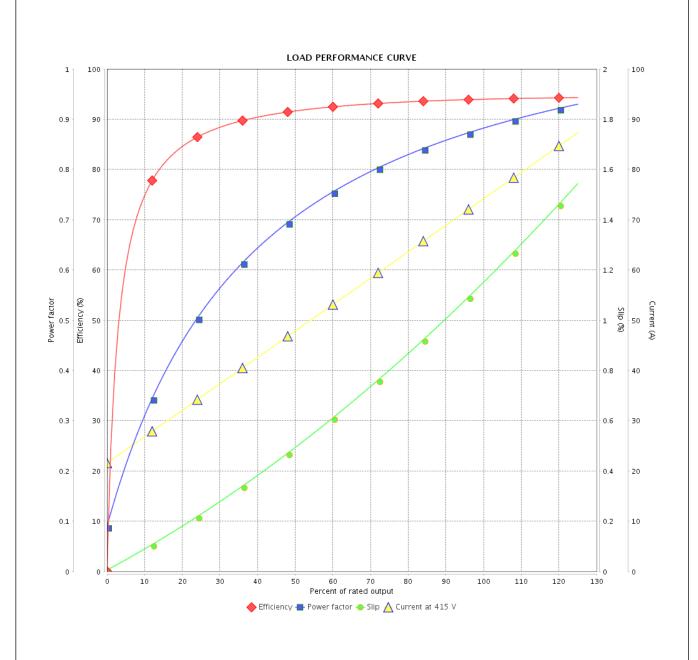
Phase

Catalog #: 07536ET3E365TS-W22

11355296

Performance	: 4	00 V 50 Hz 2P IE3				
Rated current LRC Rated torque Locked rotor tord Breakdown torqu Rated speed	: 7 : 1 que : 2 ue : 3	8.5 A .1 06 ft.lb 29 % 90 % 960 rpm	Moment of Duty cycle Insulation Service fa Temperat Design	class ector	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Rev.		Changes Summary	'	Performed	Checked	Date
Performed by						

Three Phase Induction Motor - Squirrel Cage


Customer

Product line : NEMA Premium Efficiency Three- Product code : 11355296

Phase

Catalog #: 07536ET3E365TS-W22

13 / 37

: 75.7 A : 7.9 : 106 ft.lb : 250 % : 310 % : 2965 rpm	Duty cycle Insulation Service fa	class ctor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Changes Summary		Performed	Checked	Date
				Revision
	: 7.9 : 106 ft.lb : 250 % : 310 % : 2965 rpm	: 7.9 : 106 ft.lb : 250 % : 310 % : 2965 rpm Duty cycle Insulation Service far Temperatu	: 7.9 : 106 ft.lb : 250 % : 310 % : 2965 rpm Duty cycle Insulation class Service factor Temperature rise Design	: 7.9 Duty cycle : Cont.(S1) : 106 ft.lb Insulation class : F : 250 % Service factor : 1.00 : 310 % Temperature rise : 80 K : 2965 rpm Design : B

13/04/2022

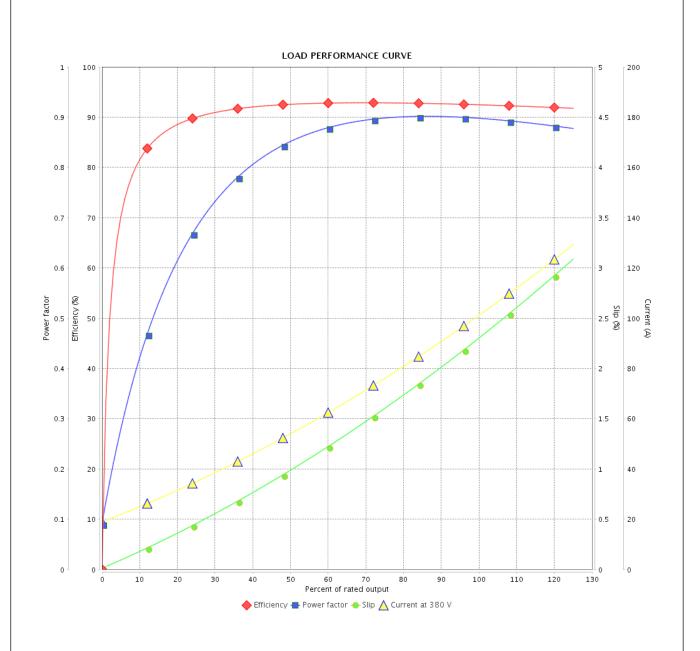
Three Phase Induction Motor - Squirrel Cage

Revision

Page 14 / 37

Customer :

Checked by


Date

13/04/2022

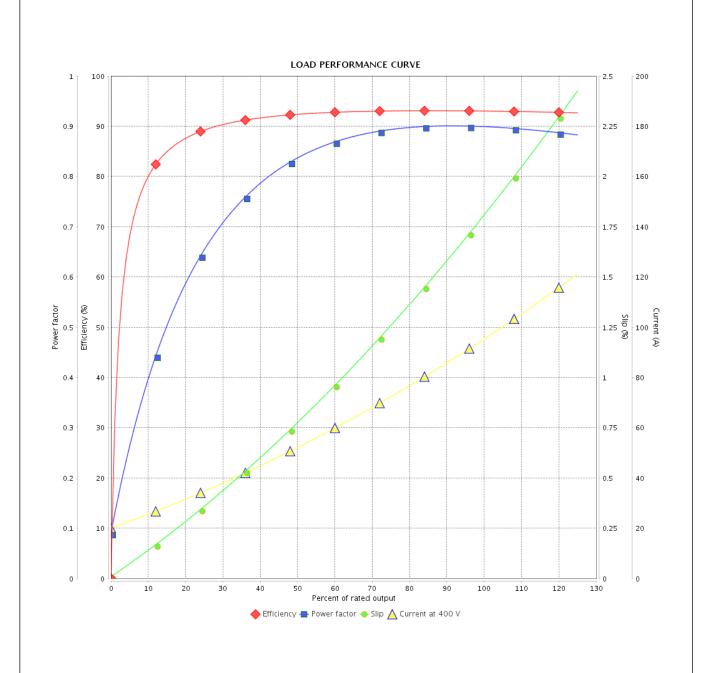
Product line : NEMA Premium Efficiency Three- Product code : 11355296

Phase

Catalog #: 07536ET3E365TS-W22

Performance : 380 V 50 Hz 2P IE1 : 100 A Rated current Moment of inertia (J) : 11.9 sq.ft.lb **LRC** : 5.2 Duty cycle : Cont.(S1) : 134 ft.lb Insulation class Rated torque : F Locked rotor torque : 160 % Service factor : 1.00 Breakdown torque : 200 % Temperature rise : 105 K Rated speed : 2930 rpm Design : B Rev. Performed Checked Date **Changes Summary** Performed by

Three Phase Induction Motor - Squirrel Cage



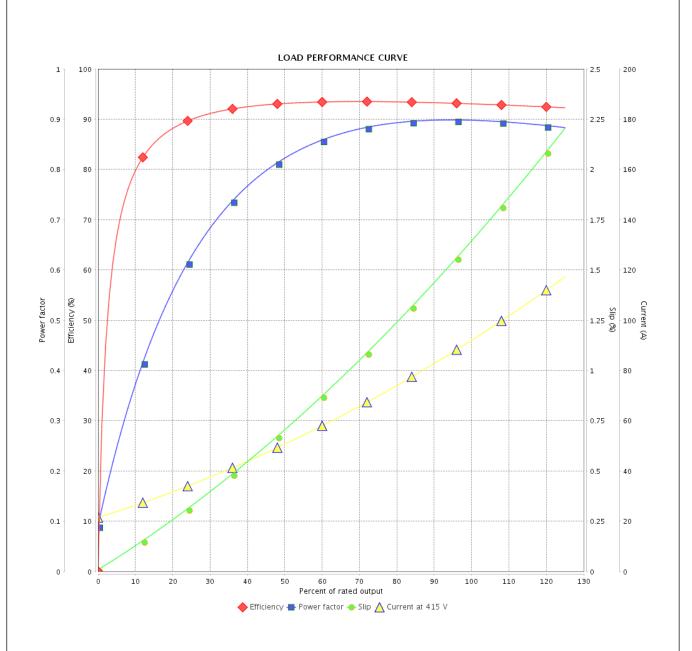
Customer

Product line : NEMA Premium Efficiency Three- Product code : 11355296

Phase

Catalog #: 07536ET3E365TS-W22

Performance	:	400 V 50 Hz 2P IE1				
Rated current	:	94.8 A	Moment o	f inertia (J)	: 11.9 sq.ft.lb	
LRC	:	5.9	Duty cycle	}	: Cont.(S1)	
Rated torque			class	:F		
Locked rotor torque	e :	175 %	Service fa	ctor	: 1.00	
Breakdown torque	:	220 %	Temperati	ıre rise	: 105 K	
Rated speed	:	2945 rpm	Design		: B	
Rev.		Changes Summary		Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	13/04/2022				15 / 37	


Three Phase Induction Motor - Squirrel Cage

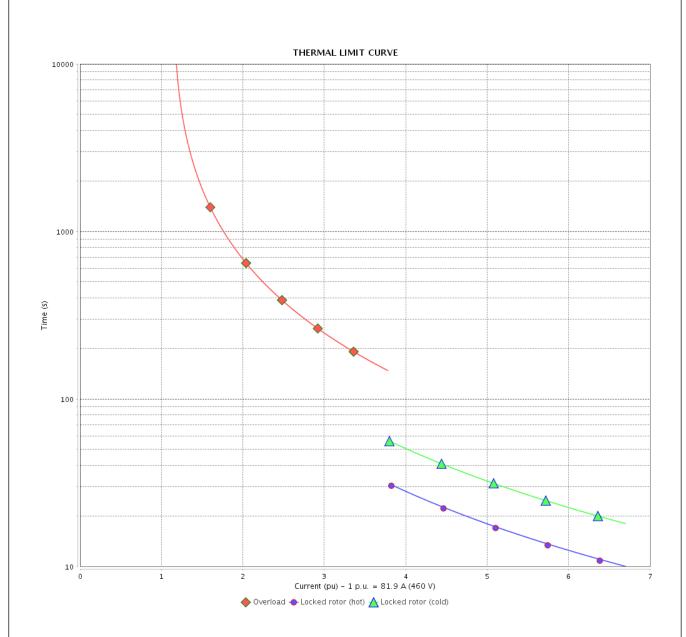
Customer

Product line : NEMA Premium Efficiency Three-Product code: 11355296

Catalog #: 07536ET3E365TS-W22

Performance	: 4	115 V 50 Hz 2P IE1				
Rated current	ated current : 91.4 A		Moment o	Moment of inertia (J)		
LRC : 6.5		3.5	Duty cycle	9	: Cont.(S1)	
Rated torque			class	: F		
Locked rotor torqu	cked rotor torque : 190 % Service factor		ictor	: 1.00		
Breakdown torque	e : 2	240 %	Temperat	Temperature rise		
Rated speed	: 2	2950 rpm	Design		: B	
Rev.		Changes Summa	ry	Performed	Checked	Date
Performed by						
Checked by					Page	Revision
Date	13/04/2022				16 / 37	

Three Phase Induction Motor - Squirrel Cage



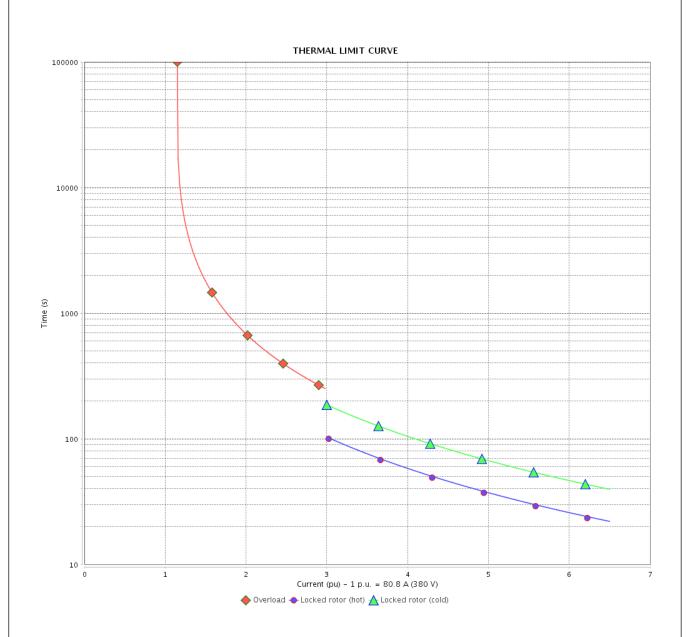
Customer	:					
Product line		NEMA Premium Efficiency TI	hree- F	Product code :	11355296	
	Р	hase	C	Catalog # :	07536ET3E3	65TS-W22
		30/460 V 60 Hz 2P				
Performance Rated current RC Rated torque ocked rotor tord reakdown tord Rated speed	: 10 : 6 : 1 que : 20 ue : 29	64/81.9 A	Moment of Duty cycle Insulation of Service fact Temperatur Design	class ctor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.25 : 80 K : B	
tated current RC tated torque ocked rotor tor reakdown torq tated speed	: 10 : 6. : 1 que : 20 ue : 29 : 39	64/81.9 A	Duty cycle Insulation of Service fac	class ctor	: Cont.(S1) : F : 1.25 : 80 K	
lated current RC lated torque ocked rotor tor	: 10 : 6. : 1 que : 20 ue : 29 : 39	64/81.9 A	Duty cycle Insulation of Service fact Temperatu	class ctor	: Cont.(S1) : F : 1.25 : 80 K	Date
ated current RC ated torque ocked rotor tor reakdown torq ated speed eating constan	: 10 : 6. : 1 que : 20 ue : 29 : 39	64/81.9 A 7 11 ft.lb 00 % 50 %	Duty cycle Insulation of Service fact Temperatu	class ctor re rise	: Cont.(S1) : F : 1.25 : 80 K : B	Date

Three Phase Induction Motor - Squirrel Cage

Customer :

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			18 / 37	

Three Phase Induction Motor - Squirrel Cage



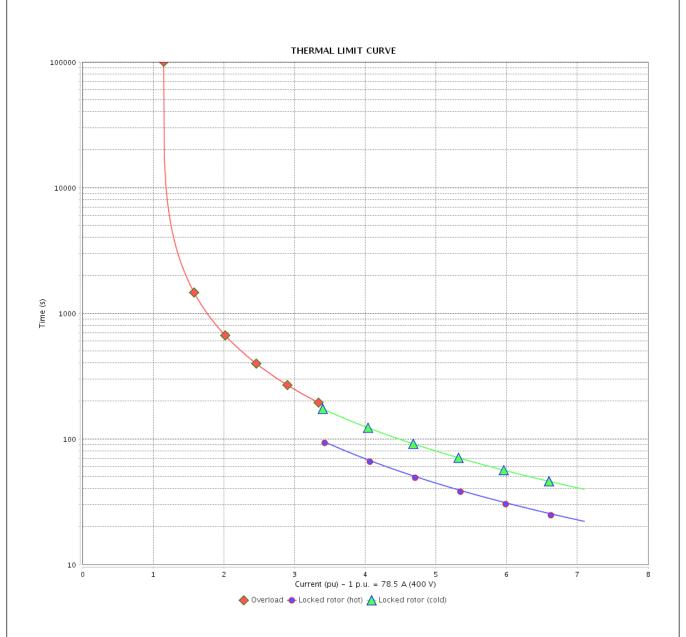
Customer	:					
Product line		NEMA Premium Efficiency	Three-	Product code :	11355296	
	·			Catalog # :	07536ET3E3	65TS-W22
Performance Rated current LRC Rated torque Locked rotor toro Breakdown torq Rated speed	: 8 : 6 : 1 que : 2 ue : 2	880 V 50 Hz 2P IE3 90.8 A 9.5 90.7 ft.lb 110 % 120 % 1255 rpm	Duty cycle Insulation Service fa Temperat	ı class actor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed	: 8 : 6 : 1 que : 2 ue : 2	0.8 A 6.5 07 ft.lb 110 %	Duty cycle Insulation Service fa	e ı class actor	: Cont.(S1) : F : 1.00 : 80 K	
Rated current LRC Rated torque Locked rotor tord Breakdown torq	: 8 : 6 : 1 que : 2 : 2 : 2	0.8 A 6.5 07 ft.lb 110 % 160 %	Duty cycle Insulation Service fa Temperat	e ı class actor	: Cont.(S1) : F : 1.00 : 80 K	
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed	: 8 : 6 : 1 que : 2 : 2 : 2	0.8 A 6.5 07 ft.lb 110 % 160 %	Duty cycle Insulation Service fa Temperat	e ı class actor	: Cont.(S1) : F : 1.00 : 80 K	Date
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constan Cooling constan	: 8 : 6 : 1 que : 2 : 2 : 2	60.8 A 6.5 07 ft.lb 10 % 160 % 1955 rpm	Duty cycle Insulation Service fa Temperat	e i class actor ure rise	: Cont.(S1) : F : 1.00 : 80 K : B	Date
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constan Cooling constan	: 8 : 6 : 1 que : 2 : 2 : 2	60.8 A 6.5 07 ft.lb 10 % 160 % 1955 rpm	Duty cycle Insulation Service fa Temperat	e i class actor ure rise	: Cont.(S1) : F : 1.00 : 80 K : B	Date
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constan Cooling constan Rev.	: 8 : 6 : 1 que : 2 : 2 : 2	60.8 A 6.5 07 ft.lb 10 % 160 % 1955 rpm	Duty cycle Insulation Service fa Temperat	e i class actor ure rise	: Cont.(S1) : F : 1.00 : 80 K : B	Date

Three Phase Induction Motor - Squirrel Cage

Customer :

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by		-		Page	Revision
Date	13/04/2022			20 / 37	

Three Phase Induction Motor - Squirrel Cage



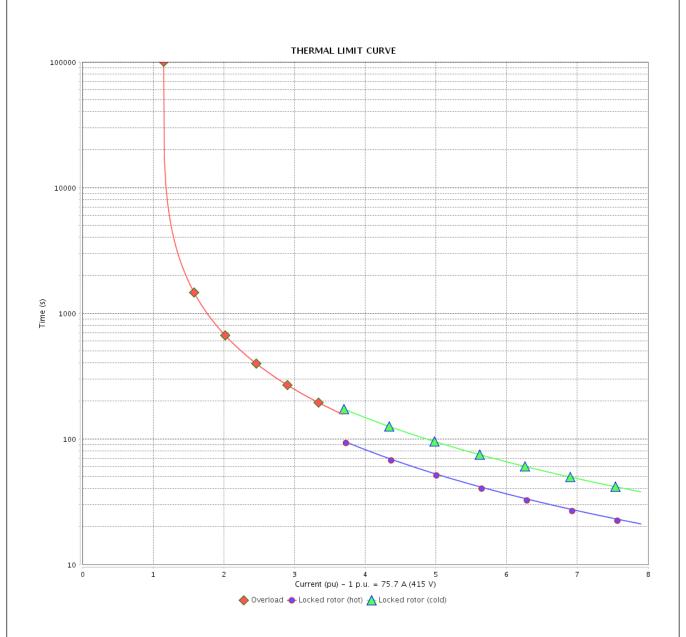
Customer	:					
Product line		NEMA Premium Efficiency ⁻ hase		Product code : Catalog # :	11355296 07536ET3E3	365TS-W22
Performance	41	00 V 50 Hz 2P IE3				
Rated current LRC Rated torque Locked rotor tord Breakdown torqu Rated speed	: 7. : 10 que : 22 ue : 39 : 29	8.5 A 1 06 ft.lb 29 % 90 % 960 rpm	Moment of Duty cycle Insulation Service fa Temperat Design	class actor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Cooling constan	t	Changes Summer:		Dorform	Chagliga	Doto
Rev.		Changes Summary		Performed	Checked	Date
Performed by						
Checked by		-			Page	Revision
Date	13/04/2022				21 / 37	1.00101011

Three Phase Induction Motor - Squirrel Cage

Customer :

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by		-		Page	Revision
Date	13/04/2022			22 / 37	

Three Phase Induction Motor - Squirrel Cage



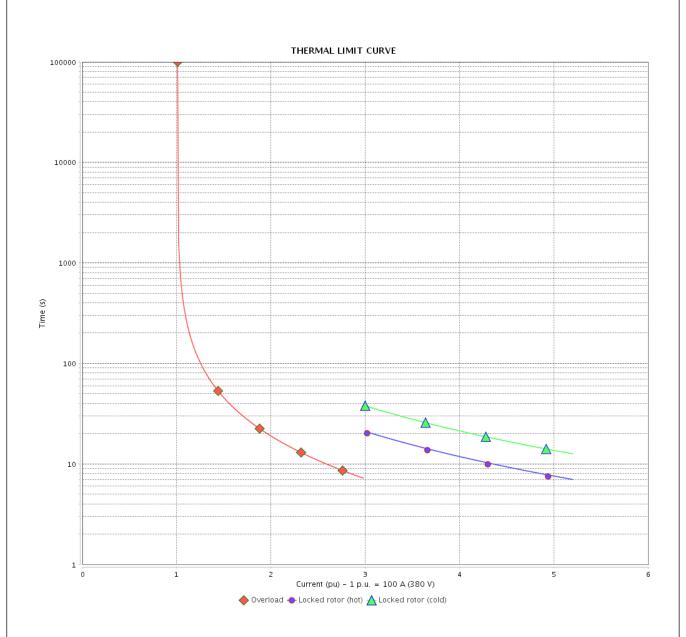
Product line		NEMA Premium Efficiency 1	Γhree-	Product code :	11355296	
	Р	Phase		Catalog # :	07536ET3E3	65TS-W22
Performance Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed	: 7 : 7 : 1 que : 2 ue : 3 : 2	15 V 50 Hz 2P IE3 5.7 A .9 06 ft.lb 50 % 10 % 965 rpm	Moment of Duty cycle Insulation Service fa Temperat Design	n class actor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constar	: 7 : 7 : 1 que : 2 ue : 3 : 2	5.7 A .9 06 ft.lb 50 % 10 %	Duty cycle Insulation Service fa Temperat	e n class actor	: Cont.(S1) : F : 1.00 : 80 K	
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constar Cooling constar	: 7 : 7 : 1 que : 2 ue : 3 : 2	5.7 A .9 06 ft.lb 50 % 10 % 965 rpm	Duty cycle Insulation Service fa Temperat	e n class actor ure rise	: Cont.(S1) : F : 1.00 : 80 K : B	Date
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constar	: 7 : 7 : 1 que : 2 ue : 3 : 2	5.7 A .9 06 ft.lb 50 % 10 %	Duty cycle Insulation Service fa Temperat	e n class actor	: Cont.(S1) : F : 1.00 : 80 K	Date
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constar Cooling constar Rev.	: 7 : 7 : 1 que : 2 ue : 3 : 2	5.7 A .9 06 ft.lb 50 % 10 % 965 rpm	Duty cycle Insulation Service fa Temperat	e n class actor ure rise	: Cont.(S1) : F : 1.00 : 80 K : B	Date
Rated current LRC Rated torque Locked rotor tor Breakdown torq Rated speed Heating constar Cooling constar	: 7 : 7 : 1 que : 2 ue : 3 : 2	5.7 A .9 06 ft.lb 50 % 10 % 965 rpm	Duty cycle Insulation Service fa Temperat	e n class actor ure rise	: Cont.(S1) : F : 1.00 : 80 K : B	Date

Three Phase Induction Motor - Squirrel Cage

Customer :

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by		-		Page	Revision
Date	13/04/2022			24 / 37	

Three Phase Induction Motor - Squirrel Cage



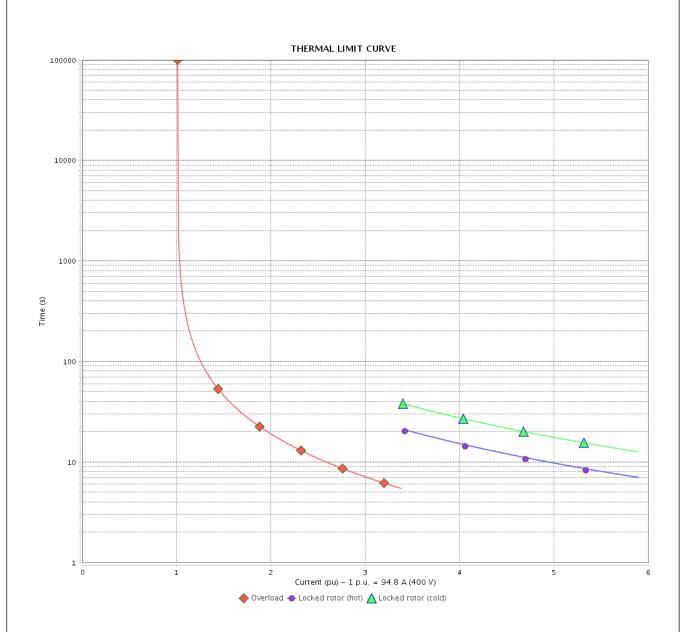
Customer	:					
Product line		NEMA Premium Efficiency	Three-	Product code :	11355296	
				Catalog # :	07536ET3E3	865TS-W22
Performance Rated current IRC Rated torque Locked rotor toro	: 1 : 5 : 1	80 V 50 Hz 2P IE1 00 A .2 34 ft.lb 60 %	Moment of Duty cycle Insulation Service fa	class	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00	
Breakdown torqu Rated speed	ie : 2 : 2	00 % 930 rpm	Temperat Design	ure rise	: 105 K : B	
Heating constan						
Cooling constan	t	Changes Commercial		Dorformer	Charles -	Data
Rev.		Changes Summary		Performed	Checked	Date
		1				
Performed by		_			_	
Checked by					Page	Revision
Date	13/04/2022				25 / 37	

Three Phase Induction Motor - Squirrel Cage

Customer :

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			26 / 37	

Three Phase Induction Motor - Squirrel Cage



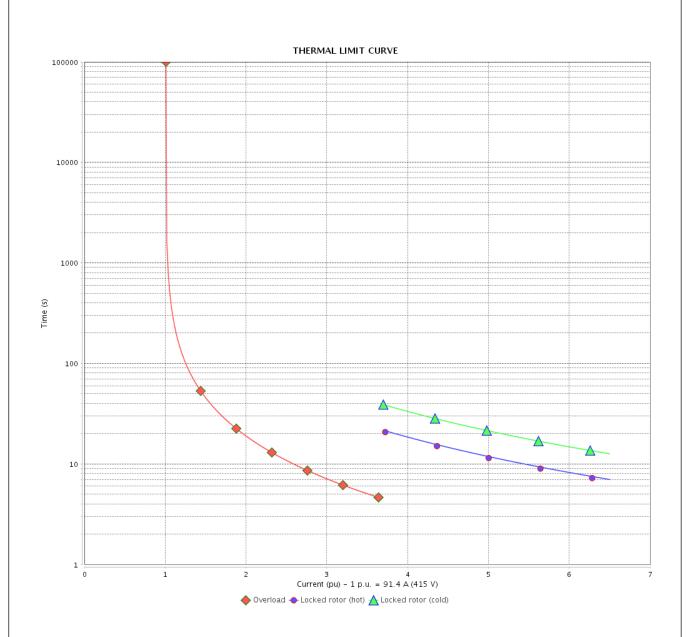
Customer	:					
Product line		NEMA Premium Efficiency	Three-	Product code :	11355296	
i roduct line	P	hase				
				Catalog # :	07536ET3E3	65TS-W22
Performance		00 V 50 Hz 2P IE1		et a de la constitución de la co	44.0	
Rated current LRC	: 9 : 5	4.8 A 9	Moment of Duty cycle	of inertia (J)	: 11.9 sq.ft.lb : Cont.(S1)	
Rated torque	: 1	34 ft.lb	Insulation	class	: F	
Locked rotor tord Breakdown tord	que : 1	75 % 20 %	Service fa Temperat		: 1.00 : 105 K	
Rated speed		945 rpm	Design	ure rise	: B	
Heating constan						
Cooling constant						
Rev.	-	Changes Summary	1	Performed	Checked	Date
Performed by						
Checked by		1			Page	Revision
Date	13/04/2022	1			27 / 37	

Three Phase Induction Motor - Squirrel Cage

Customer :

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by				Page	Revision
Date	13/04/2022			28 / 37	

Three Phase Induction Motor - Squirrel Cage



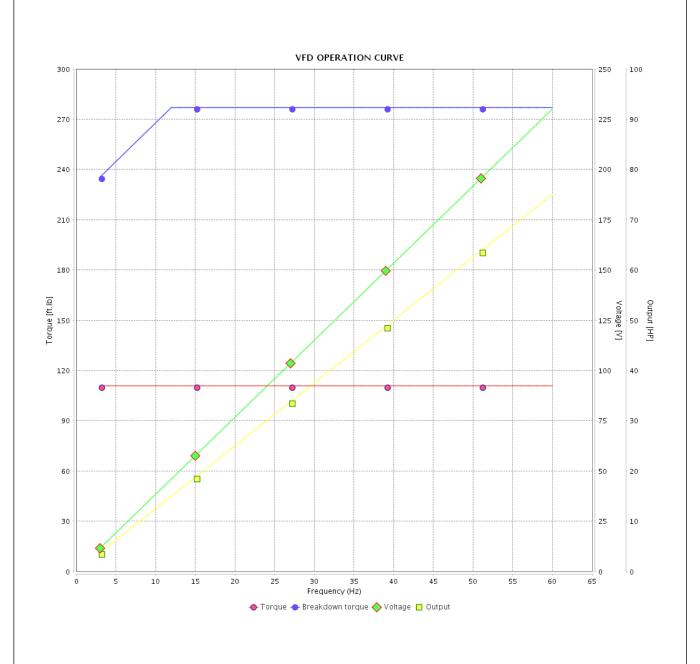
Customer	:					
Product line		NEMA Premium Efficiency ⁻ hase	Three-	Product code : Catalog # :	11355296 07536ET3E3	365TS-W22
Performance	· 4'	15 V 50 Hz 2P IE1				
Rated current LRC Rated torque Locked rotor tord Breakdown torqu Rated speed	: 9° : 6. : 13 jue : 19 ie : 24 : 29	1.4 A	Moment of Duty cycle Insulation Service fa Temperat Design	class actor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 105 K : B	
Cooling constant						
Rev.		Changes Summary		Performed	Checked	Date
		I				
Performed by					_	
Checked by	10/01/2222				Page	Revision
Date	13/04/2022				29 / 37	

Three Phase Induction Motor - Squirrel Cage

Customer

Rev.		Changes Summary	Performed	Checked	Date
Performed by					
Checked by		_		Page	Revision
Date	13/04/2022			30 / 37	

Three Phase Induction Motor - Squirrel Cage


Customer

Product line : NEMA Premium Efficiency Three- Product code : 11355296

Phase

Catalog #: 07536ET3E365TS-W22

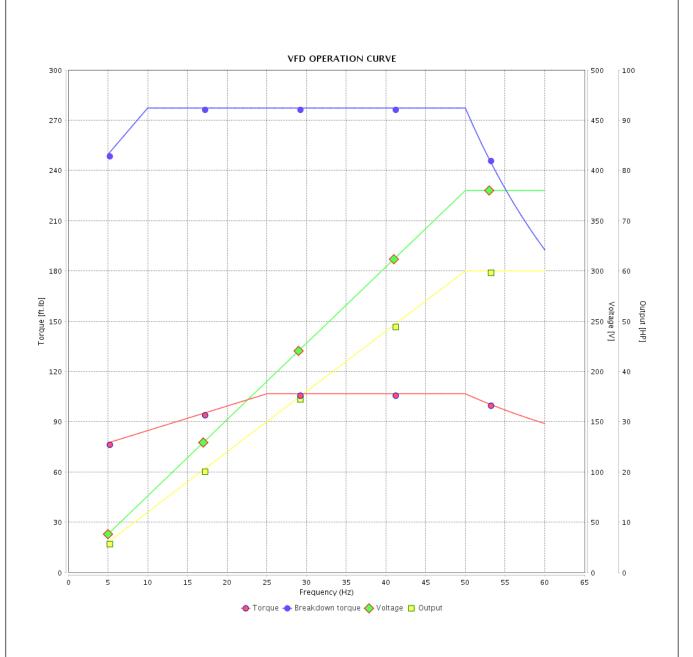
31 / 37

Performance	: 230/460 V 60 Hz 2P				
Rated current	: 164/81.9 A	Moment of inertia (J)		: 11.9 sq.ft.lb	
LRC	: 6.7	Duty cycle		: Cont.(S1)	
Rated torque	: 111 ft.lb	Insulation cla	ISS	: F	
Locked rotor torque	: 200 %	: 200 % Service factor		: 1.25	
Breakdown torque	: 250 %	Temperature	rise	: 80 K	
Rated speed	: 3555 rpm	Design		: B	
Rev.	Changes Summary		Performed	Checked	Date
Performed by					
Checked by				Page	Revision

13/04/2022

Three Phase Induction Motor - Squirrel Cage

Customer :


Product line : NEMA Premium Efficiency Three-

Phase

Product code: 11355296

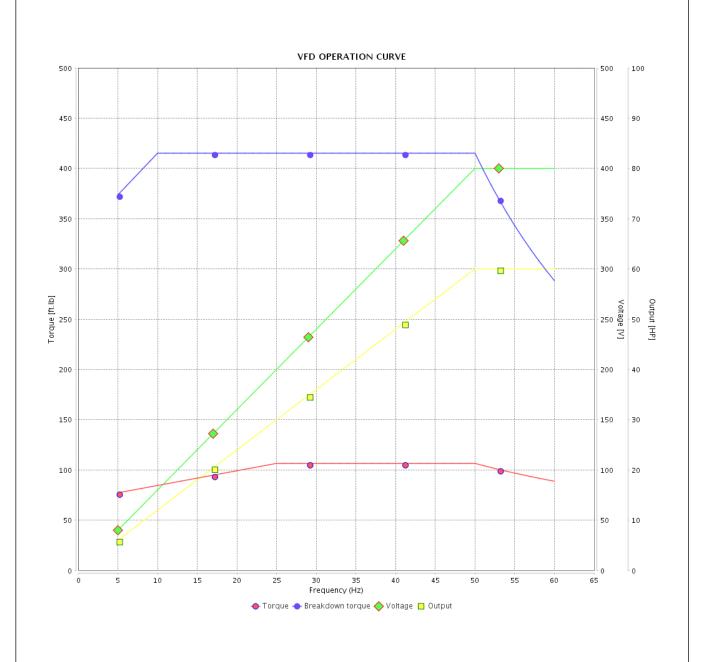
Catalog #: 07536ET3E365TS-W22

32 / 37

Performance	: 380 V 50 Hz 2P IE3				
Rated current	: 80.8 A Moment of ir		Moment of inertia (J)		
LRC	: 6.5	Duty cycle	e	: Cont.(S1)	
Rated torque	: 107 ft.lb	Insulation	class	: F	
Locked rotor torque	: 210 %	Service fa	ctor	: 1.00	
Breakdown torque	: 260 %	Temperat	ure rise	: 80 K	
Rated speed	: 2955 rpm	Design		: B	
Rev.	Changes Summary		Performed	Checked	Date
Performed by					
Checked by				Page	Revision

13/04/2022

Three Phase Induction Motor - Squirrel Cage


Customer

Product line : NEMA Premium Efficiency Three- Product code : 11355296

Phase

Catalog #: 07536ET3E365TS-W22

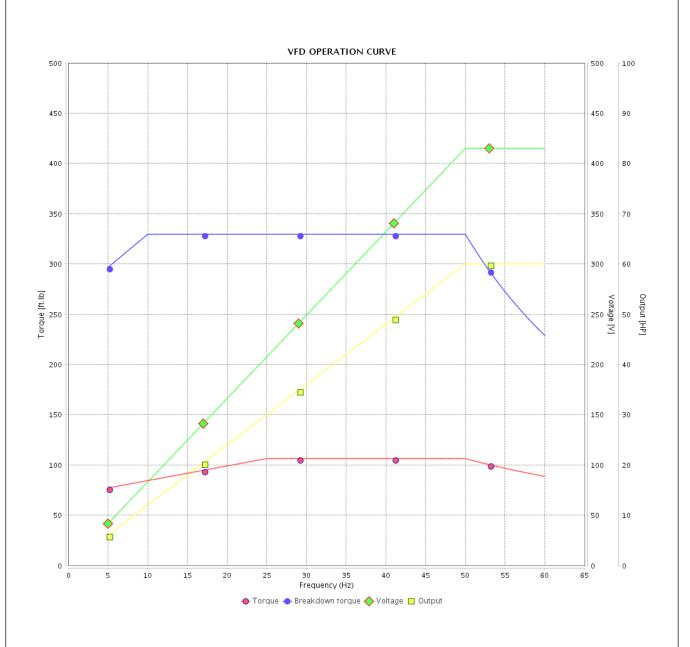
33 / 37

Performance	: 400 V 50 Hz 2P IE3				
Rated current LRC Rated torque Locked rotor torque Breakdown torque Rated speed	: 78.5 A : 7.1 : 106 ft.lb : 229 % : 390 % : 2960 rpm	Moment of inertia (J) Duty cycle Insulation class Service factor Temperature rise Design		: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Rev.	Changes Summary	Perforr	ned	Checked	Date
Performed by					
Checked by				Page	Revision

13/04/2022

Three Phase Induction Motor - Squirrel Cage

Customer :


Product line : NEMA Premium Efficiency Three-

Phase

Product code: 11355296

Catalog #: 07536ET3E365TS-W22

34 / 37

Performance	: 415 V 50 Hz 2P IE3				
Rated current LRC Rated torque Locked rotor torque Breakdown torque Rated speed	: 75.7 A : 7.9 : 106 ft.lb : 250 % : 310 % : 2965 rpm	Moment of Duty cycle Insulation Service fa Temperation	class ctor	: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Rev.	Changes Summary	'	Performed	Checked	Date
Performed by					
Checked by				Page	Revision

13/04/2022

Three Phase Induction Motor - Squirrel Cage

Customer

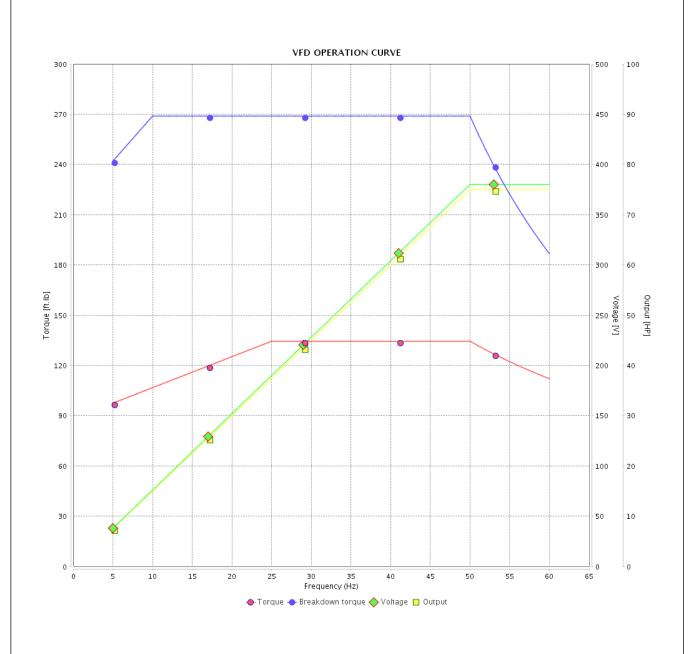
Checked by

Date

13/04/2022

Product line : NEMA Premium Efficiency Three- Product

Phase


Product code: 11355296

Catalog #: 07536ET3E365TS-W22

Page

35 / 37

Revision

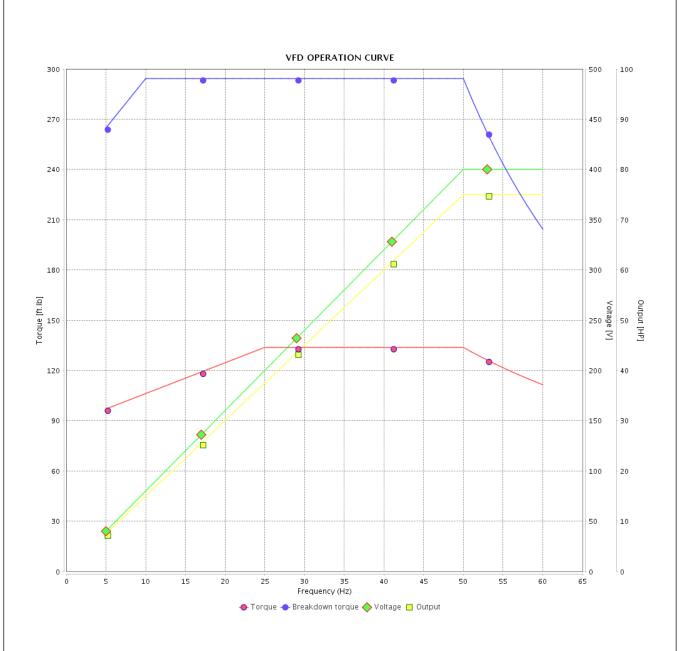
Performance	:	380 V 50 Hz 2P IE1					
Rated current LRC Rated torque Locked rotor tord Breakdown torqu Rated speed	que :	: 5.2 : 134 ft.lb : 160 % : 200 %		Moment of inertia (J) Duty cycle Insulation class Service factor Temperature rise Design		: 11.9 sq.ft.lb : Cont.(S1) : F : 1.00 : 105 K : B	
Rev.	ev. Changes Summary		·	Performed	Checked	Date	
Performed by							

Three Phase Induction Motor - Squirrel Cage

Customer :

Date

13/04/2022


Product line : NEMA Premium Efficiency Three-

Phase

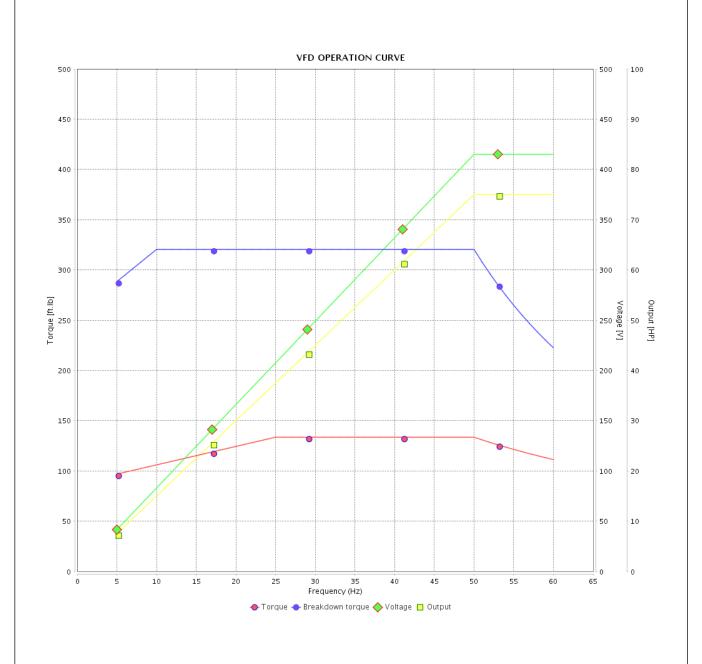
Product code: 11355296

Catalog #: 07536ET3E365TS-W22

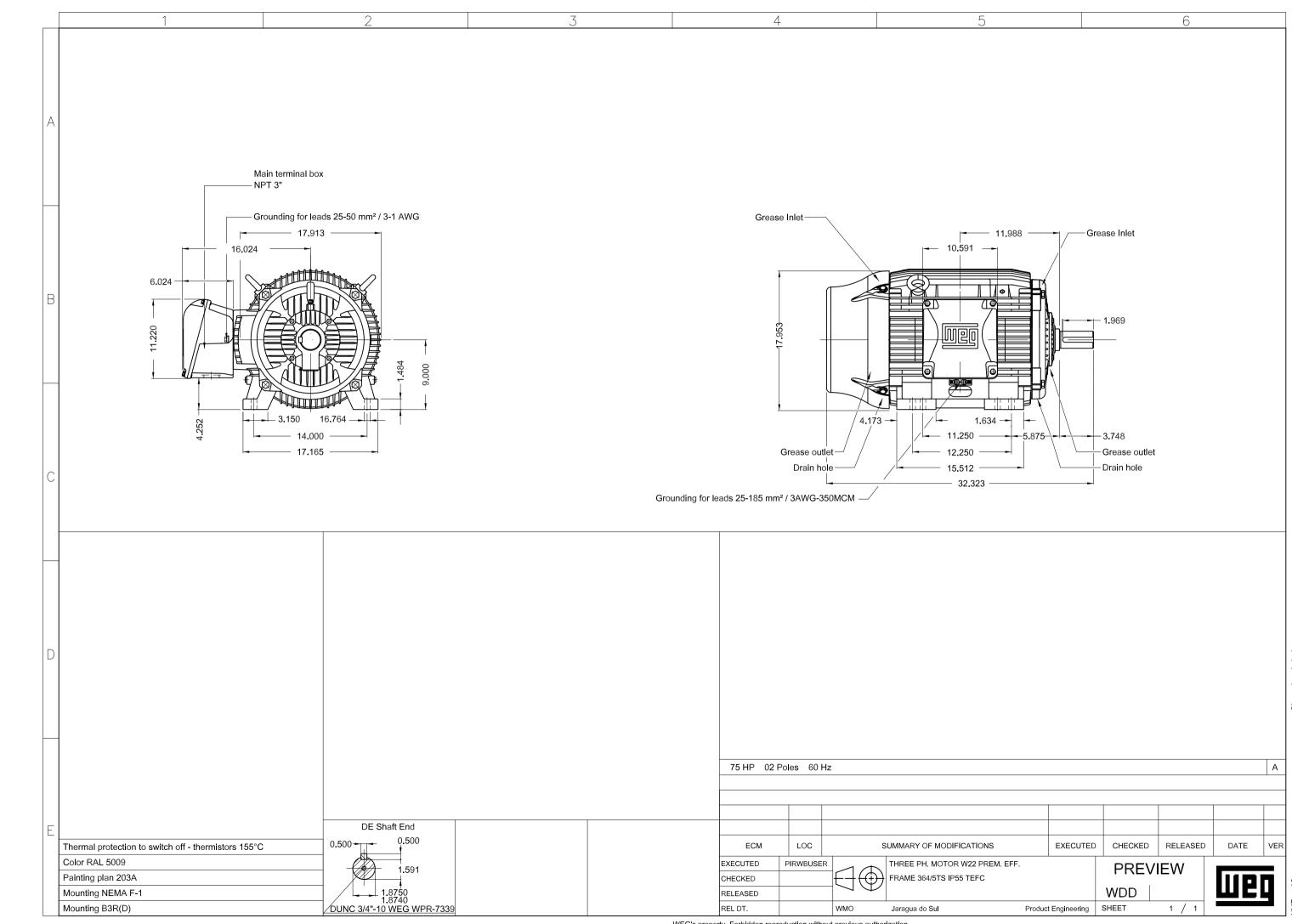
36 / 37

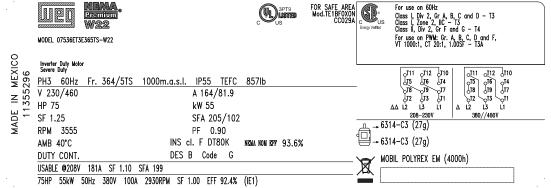
Performance : 400 V 50 Hz 2P IE1 Rated current : 94.8 A Moment of inertia (J) : 11.9 sq.ft.lb **LRC** : 5.9 Duty cycle : Cont.(S1) Insulation class : 134 ft.lb : F Rated torque Locked rotor torque : 175 % Service factor : 1.00 Breakdown torque : 220 % Temperature rise : 105 K Rated speed : 2945 rpm Design : B Rev. Performed Checked Date **Changes Summary** Performed by Checked by Revision Page

Three Phase Induction Motor - Squirrel Cage



Customer


Product line : NEMA Premium Efficiency Three- Product code : 11355296


Phase

Catalog #: 07536ET3E365TS-W22

Performance	: 4	: 415 V 50 Hz 2P IE1							
Rated current	: 9	1.4 A Moment of inertia (J)		: 11.9 sq.ft.lb					
LRC	: 6	.5	Duty cycle		: Cont.(S1)				
Rated torque	: 1	34 ft.lb	Insulation class		: F				
Locked rotor torqu	e :1	90 %	Service fa	Service factor					
Breakdown torque	: 2	40 %	Temperati	Temperature rise					
Rated speed	: 2	950 rpm	Design		: B				
Rev.	Changes Summary			Performed	Checked	Date			
Doufous ad by		T							
Performed by									
Checked by					Page	Revision			
Date	13/04/2022				37 / 37				

