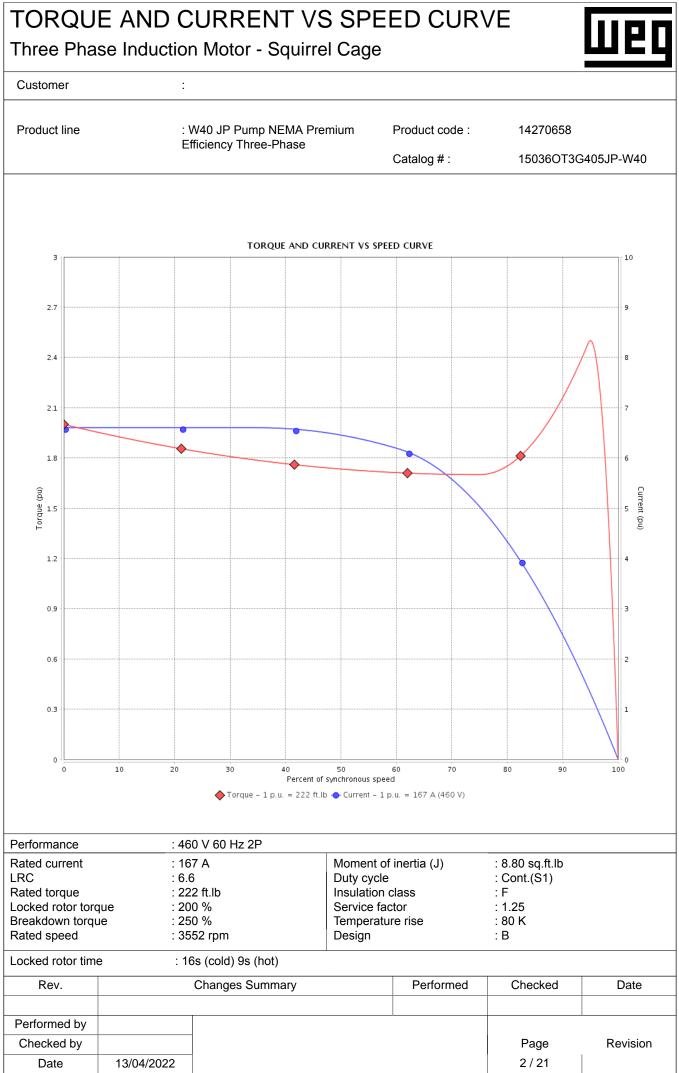
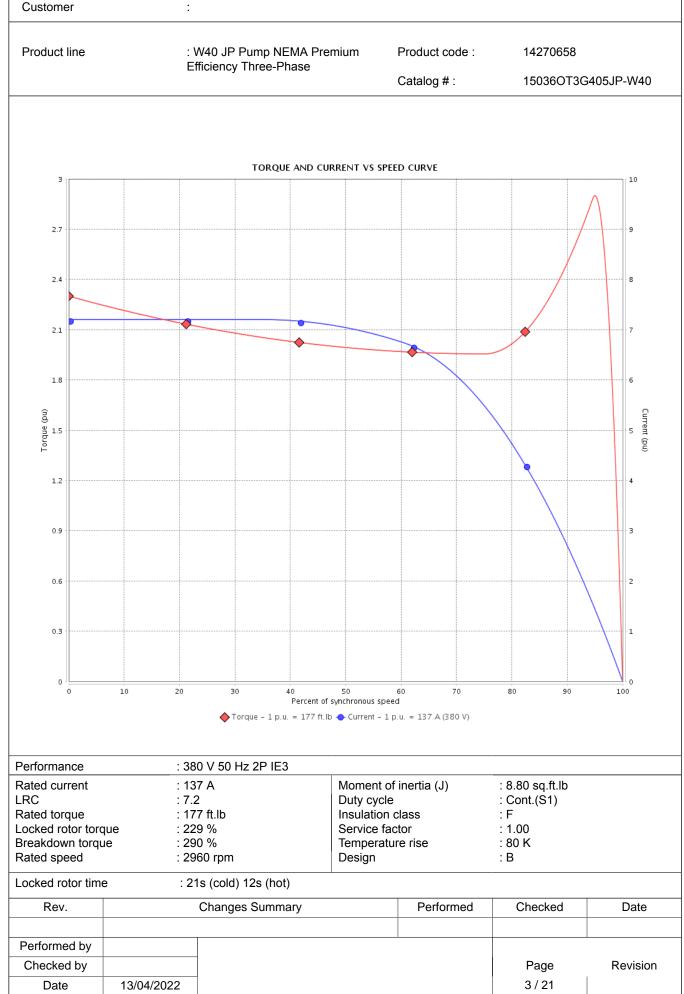
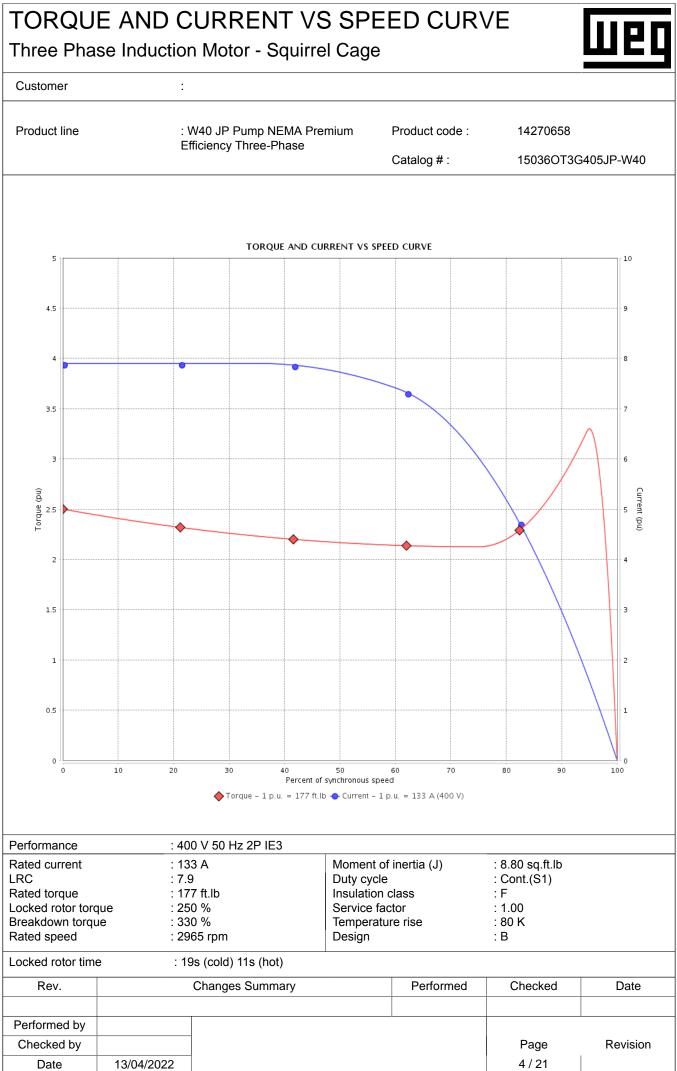
DATA SHEET


Three Phase Induction Motor - Squirrel Cage

:

Customer

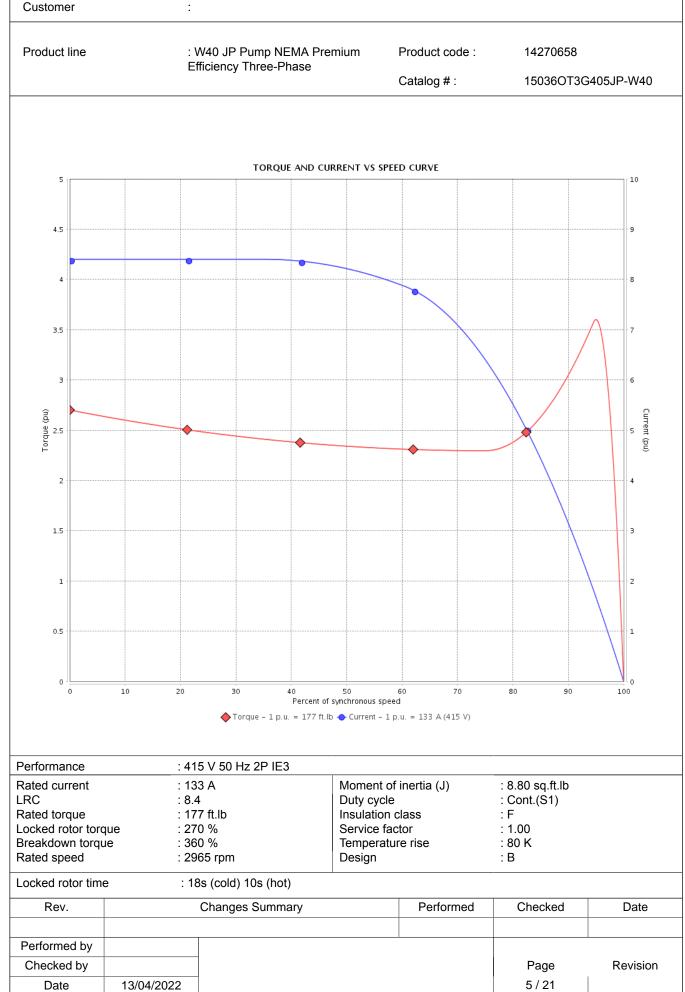

Product line		: W40 JP Pump NEM Efficiency Three-Pha		um Produ	uct code :	14270658 15036OT3G405JP-W40		
			50	Catal	og # :			
Frame		: 404/5JP		Cooling meth	od	: IC01 -	ODP	
Insulation class		: F		Mounting		: F-1		
Duty cycle		: Cont.(S1)		Rotation ¹			CW and CCW)	
Ambient tempera	ature	: -20°C to +40°C		Starting meth		: Direct	On Line	
Altitude		: 1000 m.a.s.l.		Approx. weig		: 907 lb		
Protection degre Design	e	: IP23 : B		Moment of in	ertia (J)	: 8.80 so	q.ft.lb	
Output [HP]		150		100	100		100	
Poles		2		2	2		2	
requency [Hz]		60		50	50		50	
Rated voltage [V]		460		380	400		415	
Rated current [A]		167		137	133		133	
. R. Amperes [A]		1102		986	1051		1117	
RC [A]		6.6x(Code G)	7 2	2x(Code H)	7.9x(Cod		8.4x(Code K)	
lo load current [A		40.0	1.2	43.8	43.7		48.9	
Rated speed [RPI		3552	+	2960	2965		2965	
Slip [%]	vi]	1.33		1.33	1.17		1.17	
	1	222		1.33	1.17		1.17	
Rated torque [ft.lb								
ocked rotor torqu		200		229	250		270	
Breakdown torque	;[%]	250		290	330		360	
Service factor		1.25		1.00	1.00		1.00	
emperature rise		80 K	C (1)	80 K	80 K		80 K	
ocked rotor time		16s (cold) 9s (hot) 84.0 dB(A)	21s (c	cold) 12s (hot)	19s (cold) 1	1s (hot)	18s (cold) 10s (hot)	
	25%	93.5		93.3	92.6		91.8	
Efficiency (%)	50%	93.6		93.7	93.2		92.7	
	75%	94.1		94.4	94.2		93.9	
	100%	94.1	+	94.7	94.2		93.9	
	25%	0.58		0.51	0.47		0.43	
	50%	0.58		0.76	0.47		0.43	
Power Factor	75%	0.79		0.85	0.70		0.05	
	100%	0.88		0.85	0.86		0.83	
	100 /0		rive and	Foundation loa			0.00	
Bearing type			rive end		aus			
				Max. traction Max. compression		: 1458 lb : 2365 lb		
Sealing					SION	: 2365 lb		
Lubrication inter	val		ring Seal)000 h					
Lubrication Inter								
	it.		27 g 13 g Mobil Polyrex EM					
Lubricant type								
Notes								
		ncel the previous one, w	hich				s with sinusoidal	
must be eliminate					subject to the	tolerances s	tipulated in NEMA	
(1) Looking the m				MG-1.				
		tolerance of +3dB(A).						
		ct to changes after						
manufacturing pr			/	P	erformed	Checked	Date	
		Changes Summary						
(4) At 100% of fu		Changes Summary	·					
(4) At 100% of fu			,					
(4) At 100% of fu Rev.			<u></u>			Page	Revision	


TORQUE AND CURRENT VS SPEED CURVE

Three Phase Induction Motor - Squirrel Cage

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

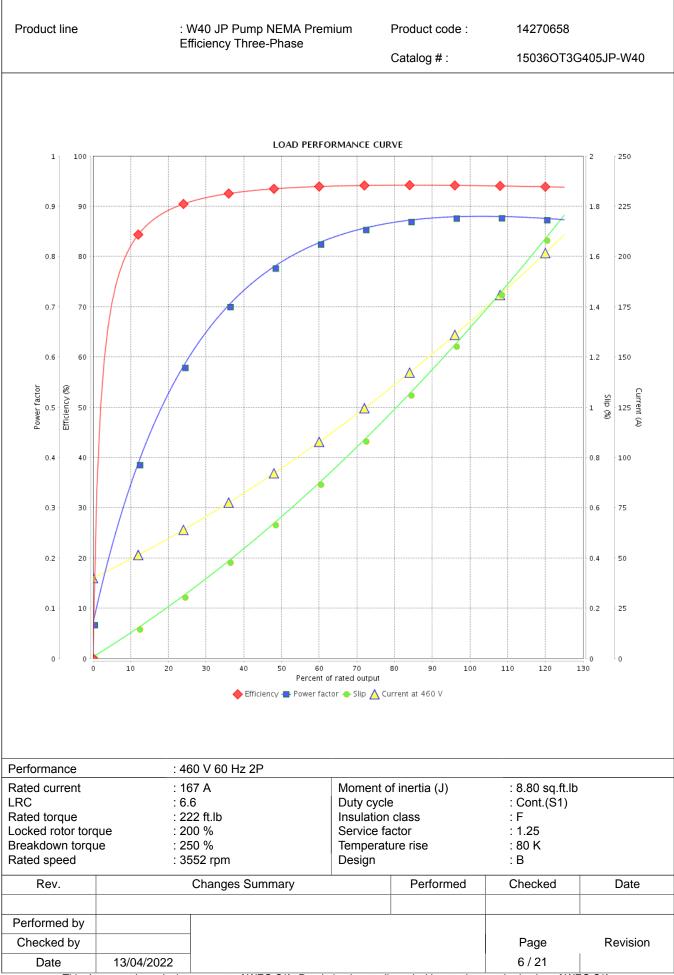


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

TORQUE AND CURRENT VS SPEED CURVE

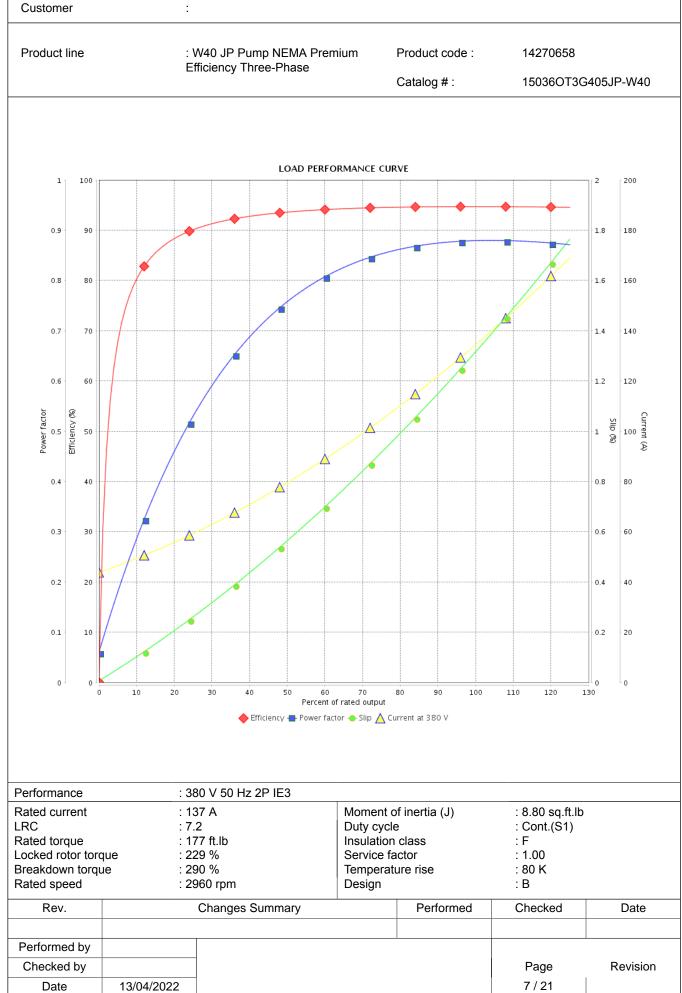
Three Phase Induction Motor - Squirrel Cage

Customer


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Three Phase Induction Motor - Squirrel Cage

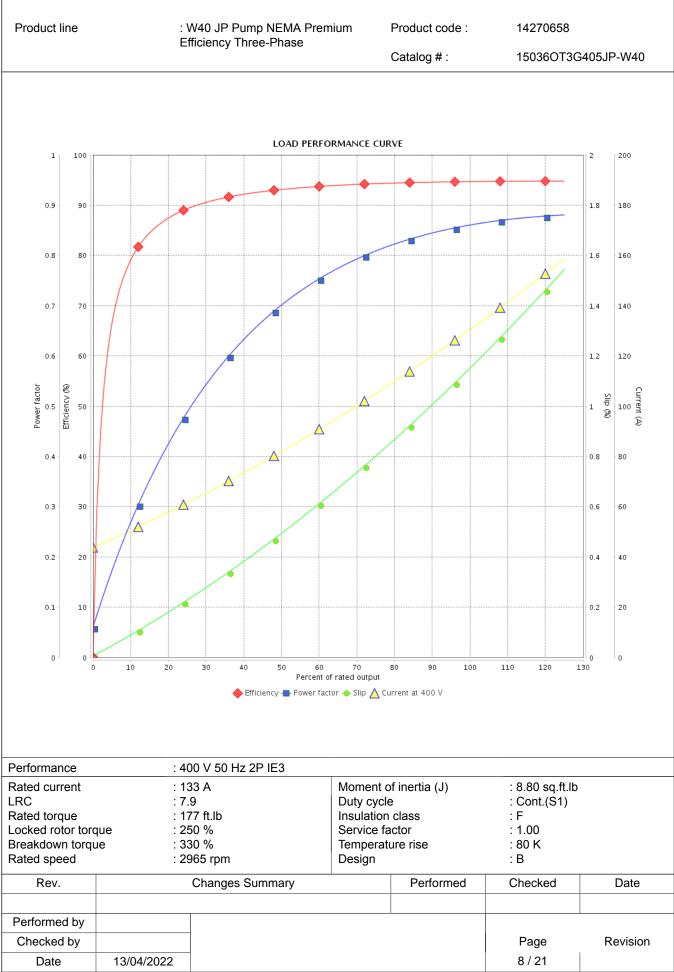
:



Customer

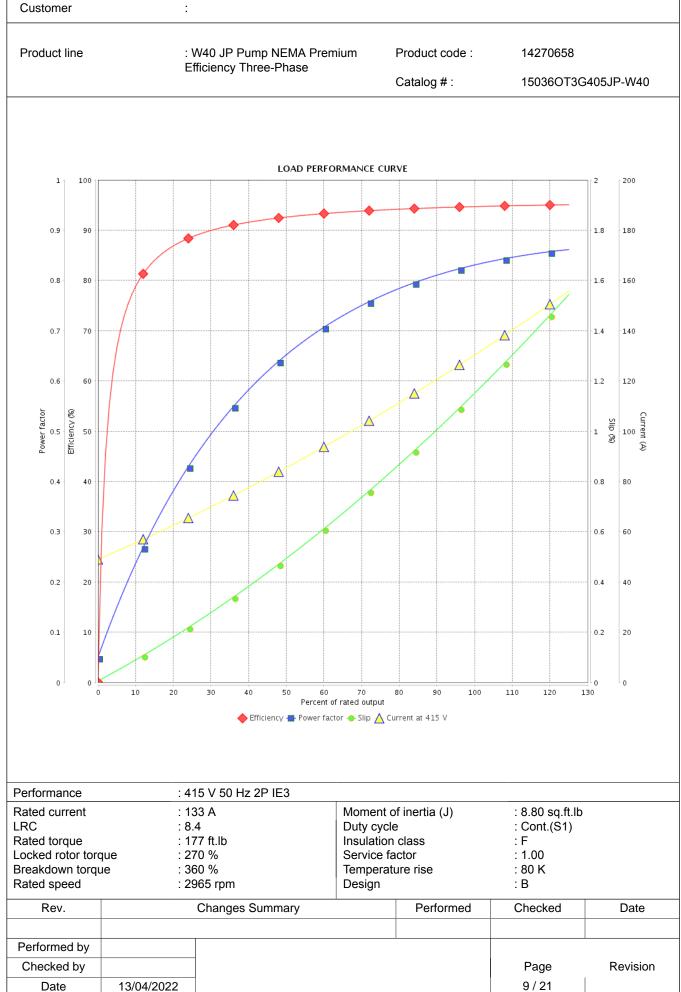
Three Phase Induction Motor - Squirrel Cage

Customer


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

Three Phase Induction Motor - Squirrel Cage

:



Customer

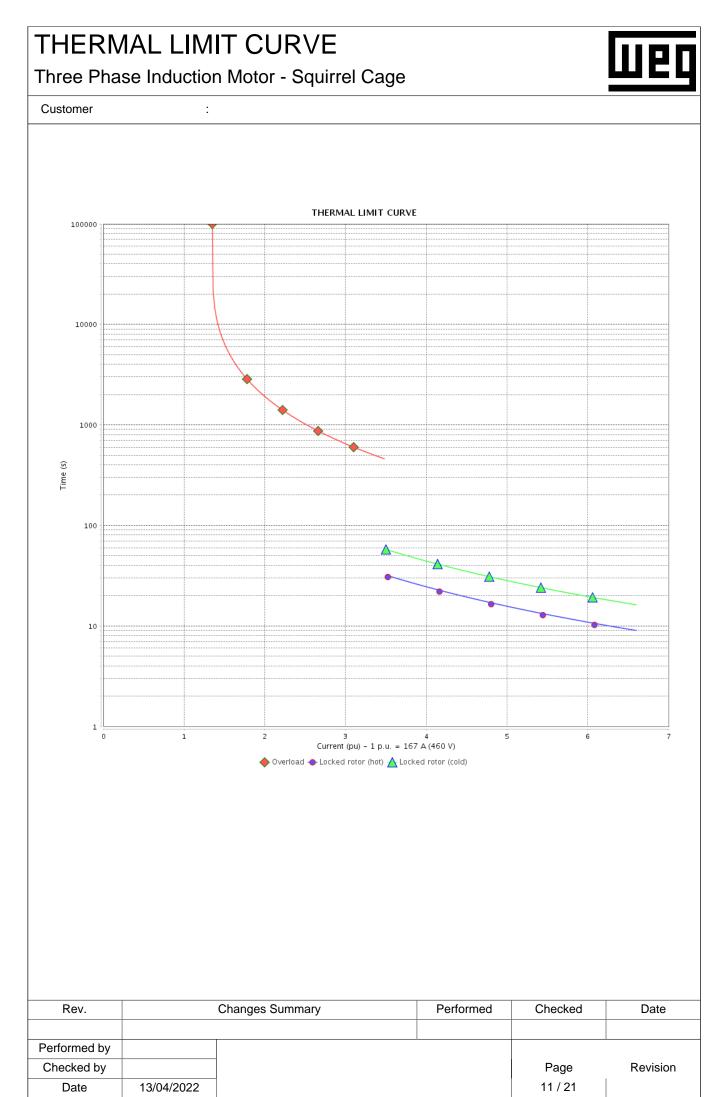
Three Phase Induction Motor - Squirrel Cage

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

THERMAL LIMIT CURVE

Three Phase Induction Motor - Squirrel Cage


:

Customer

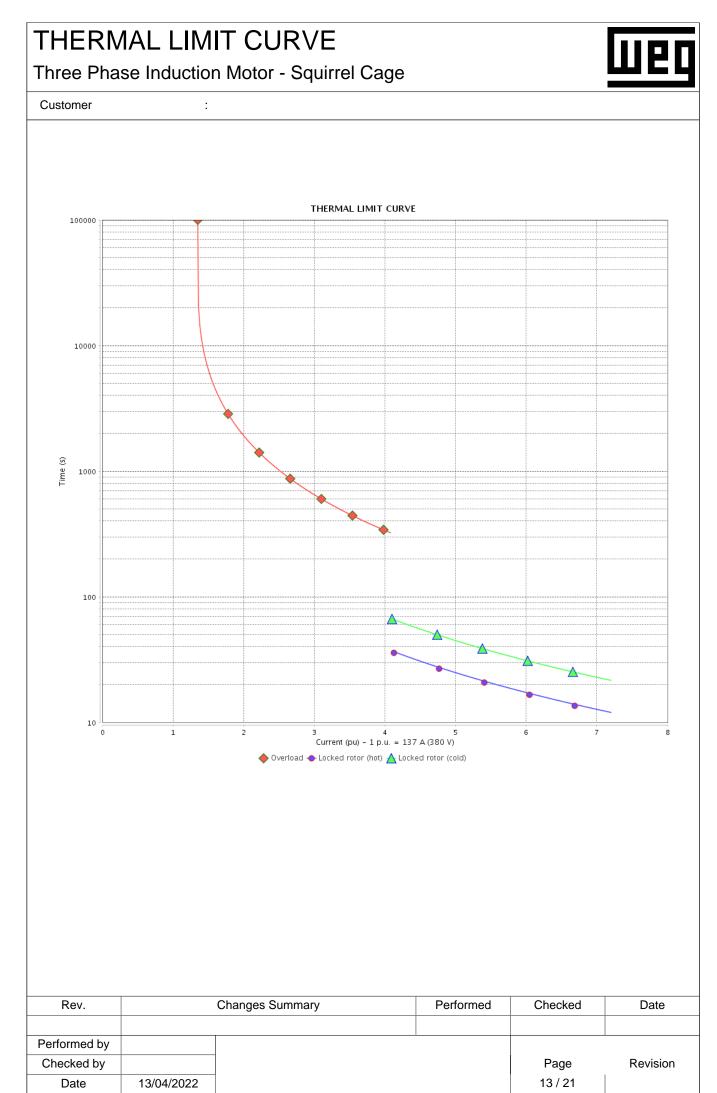
Product line	: E	W40 JP Pump NEMA Premi Efficiency Three-Phase		Product code : Catalog # :	14270658 15036OT3G4	
Performance		60 V 60 Hz 2P		6 · · · · · · · · · · · · · · · · · · ·		
Rated current LRC	: 1	67 A	Duty cycle	of inertia (J)	: 8.80 sq.ft.lb : Cont.(S1)	
Rated torque		22 ft.lb	Insulation		: F	
Locked rotor torg	jue : 2	200 %	Service fa	actor	: 1.25	
Breakdown torqu		50 %	Temperat	ure rise	: 80 K	
Rated speed	: 3	552 rpm	Design		: B	
Heating constant						
Cooling constant						
Rev.		Changes Summary		Performed	Checked	Date
Performed by					I	
Checked by		-			Page	Revision
Date	13/04/2022	-			10/21	

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

THERMAL LIMIT CURVE

Three Phase Induction Motor - Squirrel Cage

:



Customer

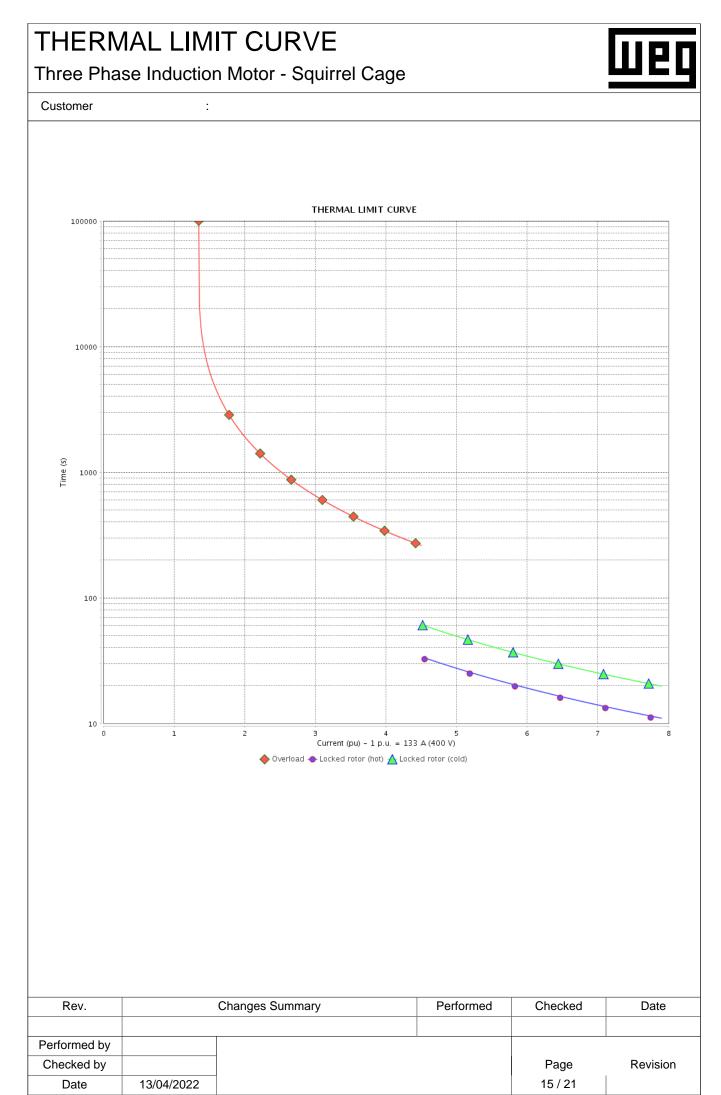
Product line	: \	W40 JP Pump NEMA Prem	ium	Product code :	14270658	
	E	fficiency Three-Phase		Catalog # :	15036OT3G4	05JP-W40
Performance	: 38	80 V 50 Hz 2P IE3				
Rated current		37 A	Moment o	f inertia (J)	: 8.80 sq.ft.lb	
LRC	: 7.	2	Duty cycle	9	: Cont.(S1)	
Rated torque		77 ft.lb	Insulation		: F : 1.00	
Locked rotor torq Breakdown torqu		29 % 90 %	Service fa Temperatu		: 80 K	
Rated speed		960 rpm	Design		: B	
Heating constant			-			
Cooling constant						
Rev.	·	Changes Summary		Performed	Checked	Date
						24.0
Performed by						
Checked by		-			Page	Revision
Date	13/04/2022	-			12 / 21	
					·· = · /	

a
 13/04/2022
 12 / 21

 This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.
 Subject to above a without patient

THERMAL LIMIT CURVE

Three Phase Induction Motor - Squirrel Cage


:

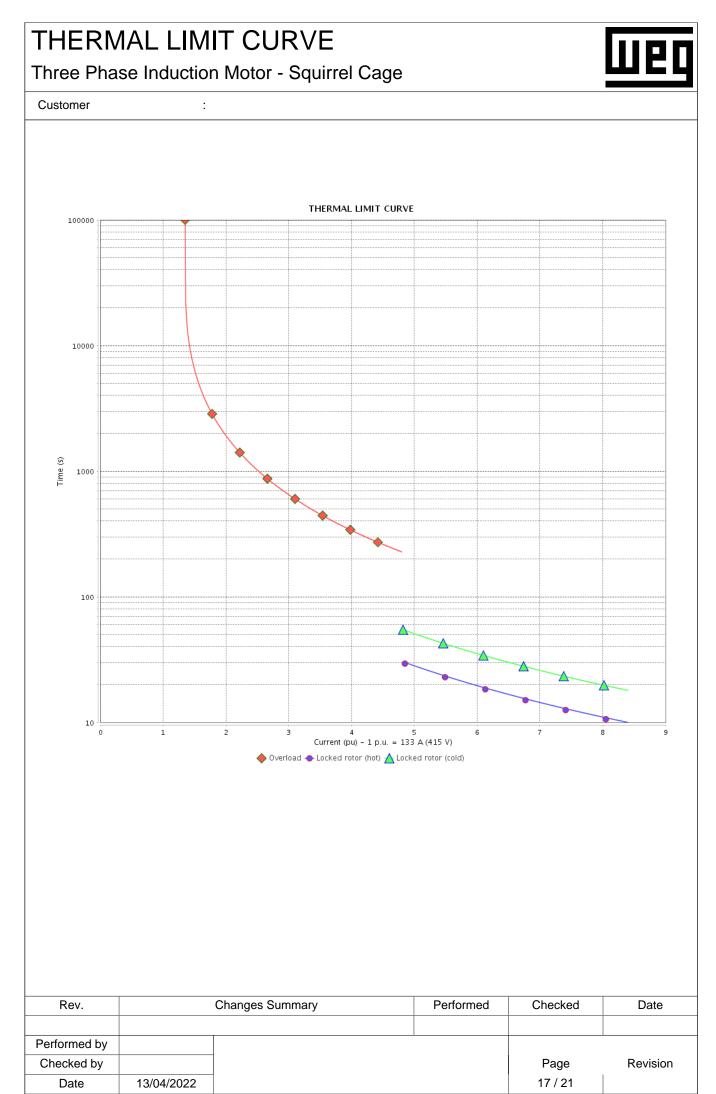
Customer

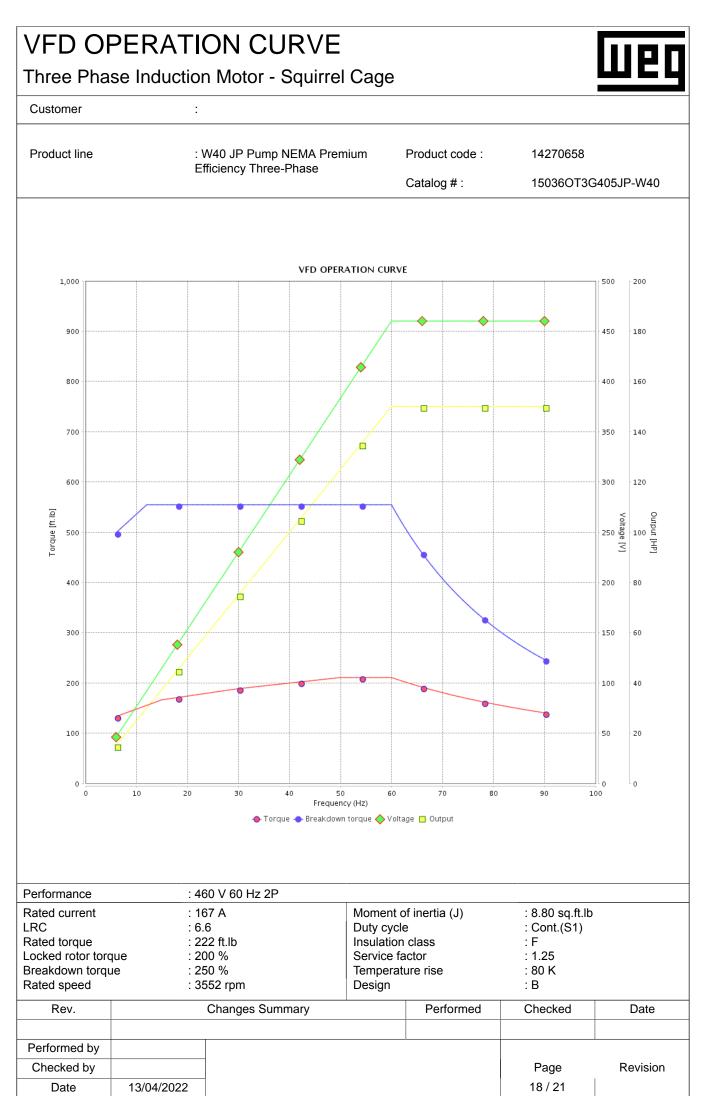
Product line	: ` E	W40 JP Pump NEMA Prem ifficiency Three-Phase		Product code : Catalog # :	14270658 15036OT3G4	05JP-W40
Performance		00 V 50 Hz 2P IE3				
Rated current LRC Rated torque Locked rotor torqu Breakdown torqu Rated speed	: 7 : 1 jue : 2 ie : 3	33 A .9 77 ft.lb 50 % 30 % 965 rpm	Moment c Duty cycle Insulation Service fa Temperate Design	class actor	: 8.80 sq.ft.lb : Cont.(S1) : F : 1.00 : 80 K : B	
Heating constant						
Cooling constant Rev.	· ·	Changes Summary		Performed	Checked	Date
rtev.		Changes Summary		renomea	Спескеа	Dale
Performed by						
Checked by		-			Page	Revision
Date	13/04/2022	-			14 / 21	

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

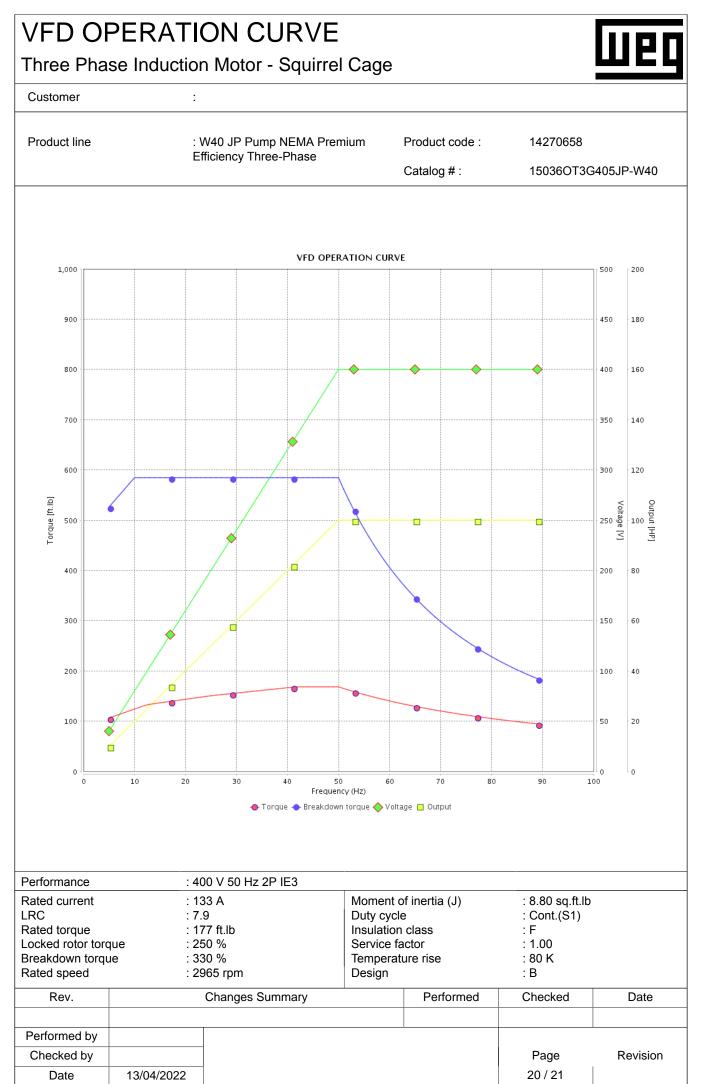
THERMAL LIMIT CURVE

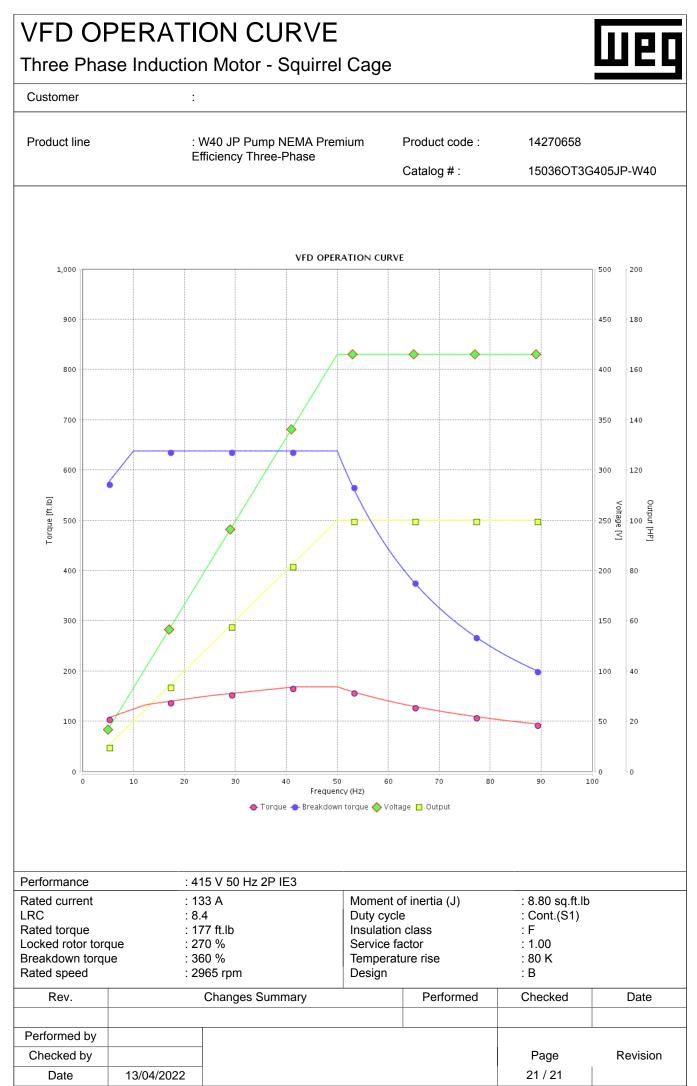
Three Phase Induction Motor - Squirrel Cage

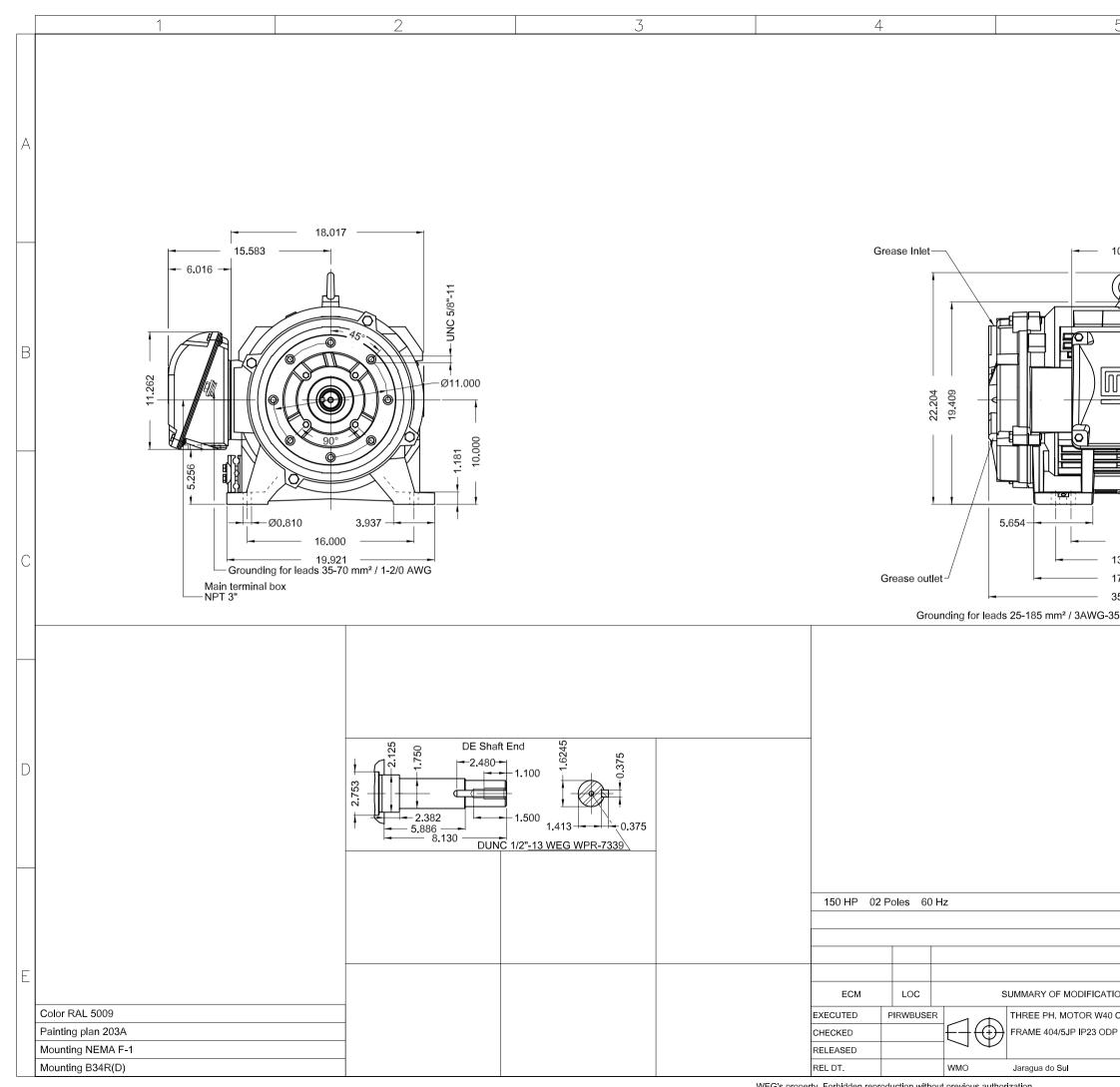

:



Customer


Product line	: \ E ¹	W40 JP Pump NEMA Premi fficiency Three-Phase		Product code : Catalog # :	14270658 15036OT3G4	05.IP-W40
				0		
Performance	· 4	15 V 50 Hz 2P IE3				
Rated current		33 A	Moment o	f inertia (J)	: 8.80 sq.ft.lb	
LRC	: 8.	.4	Duty cycle	;	: Cont.(S1)	
Rated torque		77 ft.lb	Insulation		: F	
Locked rotor toro Breakdown torqu		70 % 60 %	Service fa Temperatu		: 1.00 : 80 K	
Rated speed		965 rpm	Design		: B	
			2009/1		· -	
Heating constant						
Cooling constant	t					
Rev.		Changes Summary		Performed	Checked	Date
		1				
Performed by						
Checked by					Page	Revision
Date	13/04/2022				16 / 21	


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.



WEG's property. Forbidden reproduction without previous authorization.

5			6			
5 10.591 10.		0.250	ease Inlet	Q14.095		Dimensions in inches
					A	
				1:9		
				1.3		
IONS	EXECUTED	CHECKED	RELEASED	DATE	VER	
CLOSE COUPLED F		WDD		Ше	g	E A3
Produc	tEngineering	SHEET	1 / 1			XME

-W40		ссо.	29A	ty Moto	<u>.</u>	(CE o		3pt9 Js Listi		C 60034-1 Dd.to1#foxof	N For 60Hz use on PWM, VT 1000:1, CT 2:1, 1.0SF
	PH 3 F	R 40	04/	5JP		HP(kW)	150(1	10)		Hz 6	0	PART-WINDING WYE-DELTA START RUN START RUN
MODEL 150360T3G405JP MADE IN BRAZIL 14270658	v 460				A	167				IF	P23	0112 0110 0111 0112 0110 0111 0112 0110 0111 0112 0110 0111 017 018 019 017 018 019 016 014 015 016 014 015 016 014 015 016 014 015 017 018 019 017 018 019
360T. IN 1270	NEMA NC	DM EF	F		9	4.1	%	RPM	3552	2		♀16 ♀14 ♀15 ♀16 ¢14 ♀15 ♀17 ♀18 ♀19 ♀17 ¢18 ♀19 ♀11 ♀12 ♀13 ♀11 ♀12 ♀13 ♀11 ♀12 ♀13 ♀11 ♀12 ♀13 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
150 14DE	ENCL OD	DР	DUT	,	(CONT.		INS.	CL.	·∆T	80 K	
IODEL	PF 0.8	88				DES	В	CODE	G	AMB.	40°C	$ = \frac{1}{6212 - Z - C3(2/g)} $ MOBIL POLYKEX EM = $6212 - Z - C3(13g)$ 14418 h
2	SF 1.25	5		SFA 2	209				ALT	1000	m.a.s.l.	906 Lbs
	100HP	75k'	W 50)Hz 3	80V	137A	2960RI	PM SF	1.00	EFF	94.7%	(IE3)