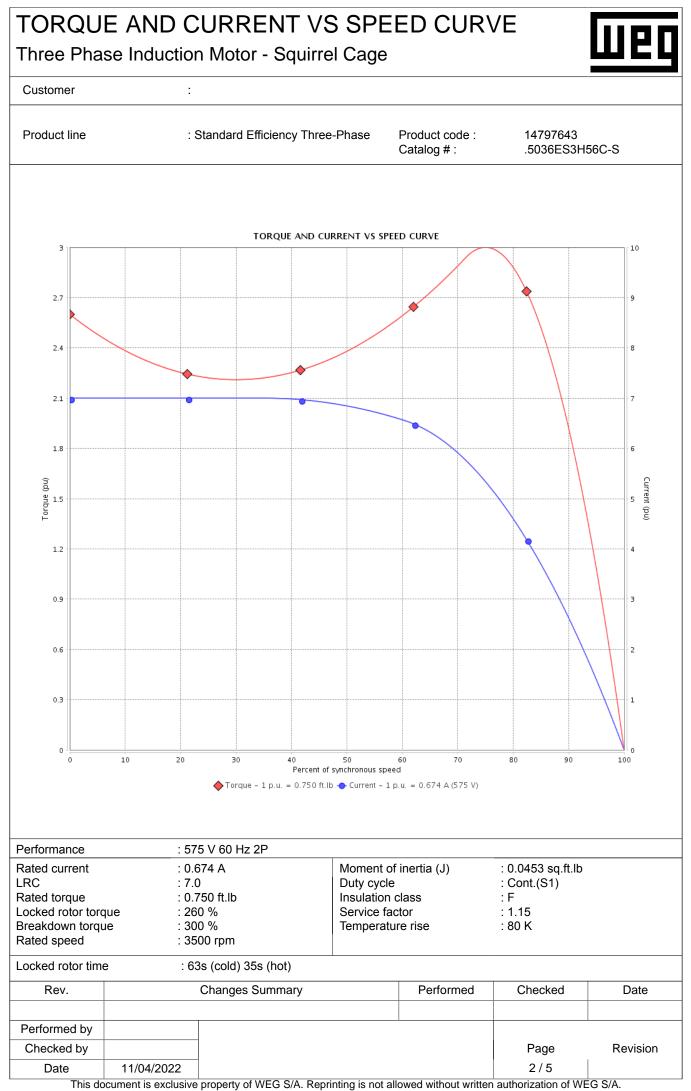
DATA SHEET

Three Phase Induction Motor - Squirrel Cage

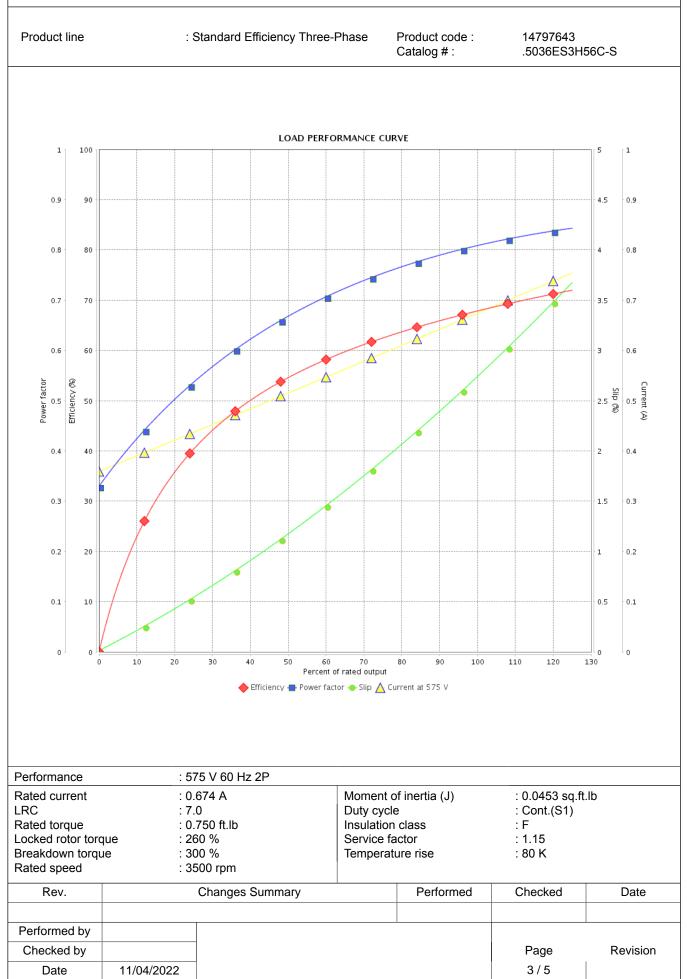

:

Customer

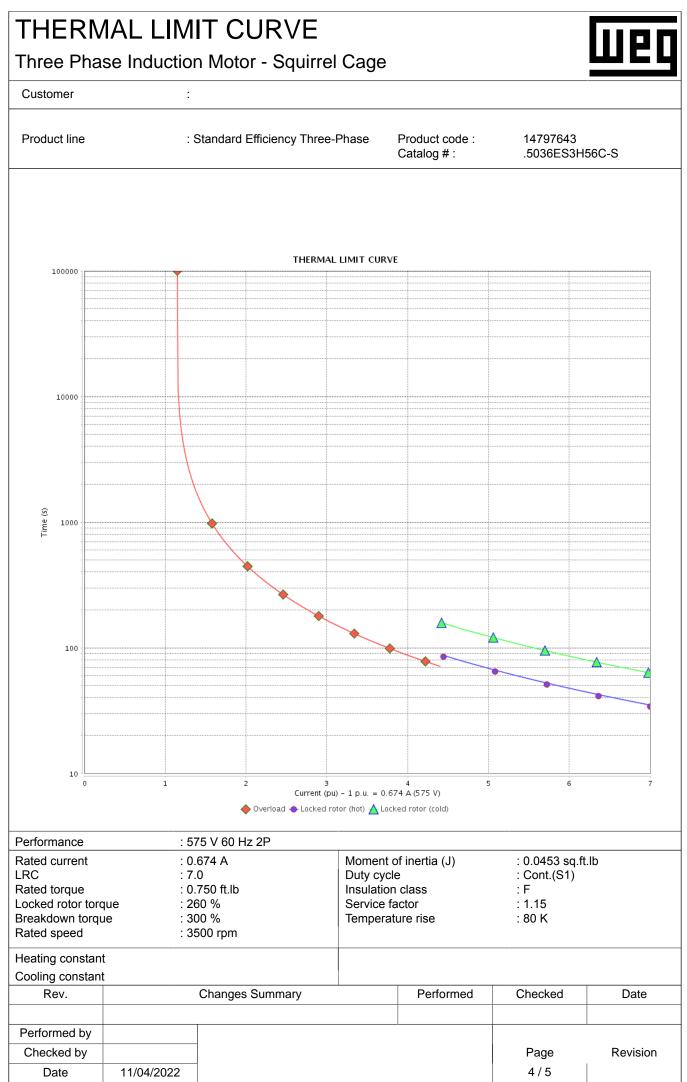
	t line : Standard Efficiency Three-					Product code : Catalog # :	14797643 .5036ES3H56C-S	
Frame Output Poles Frequency Rated voltage Rated current L. R. Amperes LRC No load current Rated speed Slip Rated torque Locked rotor toro Breakdown torqu Insulation class Service factor Moment of inertia	le	: 2 : 60 H : 575 : 0.67 : 4.72 : 7.0× : 0.36 : 350 : 2.78 : 0.75 : 260 : 300 : F : 1.15	HP (0.37 k ⁴ Hz V 2 A (Code L) 30 A 0 rpm 3 % 50 ft.lb % %	W)	Tempera Duty cy Ambien Altitude Protecti Cooling Mountin Rotatior Noise le	t temperature on degree method g 1 ¹ evel ² method	: 63s (cold) : 80 K : Cont.(S1) : -20°C to + : 1000 m.a. : IP55 : IC411 - TE : F-1 : Both (CW : 68.0 dB(A : Direct On : 20.0 lb	-40°C s.l. EFC and CCW)
Dutput	25%	50%	75%	100%	Foundatic	on loads		
Efficiency (%) Power Factor	50.9 0.43	55.0 0.67	62.0 0.75	68.0 0.81	Max. tract Max. com		: 12 lb : 32 lb	
Bearing type Sealing Lubrication inter Lubricant amoun Lubricant type Notes		:		03 ZZ Ring - - Mol	bil Polyrex	6202 ZZ Without Bearing - EM	Seal	
nust be eliminate 1) Looking the m 2) Measured at 1 3) Approximate v nanufacturing pro	ed. notor from t 1m and with weight subj ocess.	he shaft e n toleranc	nd. e of +3dB(/				based on tests wi he tolerances stipu	
This revision repl nust be eliminate (1) Looking the m (2) Measured at 1 (3) Approximate v nanufacturing pro (4) At 100% of ful Rev.	ed. notor from t 1m and with weight subj ocess.	he shaft e n toleranc ect to cha	nd. e of +3dB(/	۹).	power su			
nust be eliminate 1) Looking the m 2) Measured at 1 3) Approximate nanufacturing pro 4) At 100% of ful	ed. notor from t 1m and with weight subj ocess.	he shaft e n toleranc ect to cha	nd. e of +3dB(/ nges after	۹).	power su	pply, subject to th	e tolerances stipu	lated in NEMA
nust be eliminate 1) Looking the m 2) Measured at 7 3) Approximate v nanufacturing pro 4) At 100% of ful Rev. Performed by	ed. notor from t 1m and with weight subj ocess.	he shaft e n toleranc ect to cha	nd. e of +3dB(/ nges after	۹).	power su	pply, subject to th	e tolerances stipu Checked	lated in NEMA
nust be eliminate 1) Looking the m 2) Measured at 3) Approximate v nanufacturing pr 4) At 100% of ful Rev.	ed. notor from t 1m and with weight subj ocess.	he shaft e n toleranc ect to cha Ch	nd. e of +3dB(/ nges after	۹).	power su	pply, subject to th	e tolerances stipu	lated in NEMA

Шер

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.



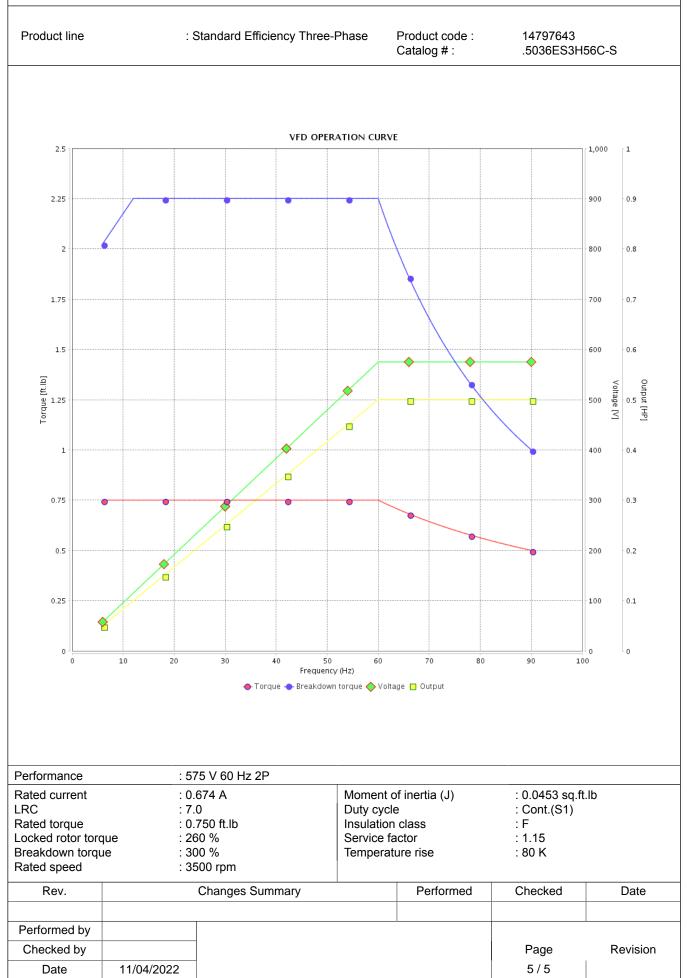
LOAD PERFORMANCE CURVE


Three Phase Induction Motor - Squirrel Cage

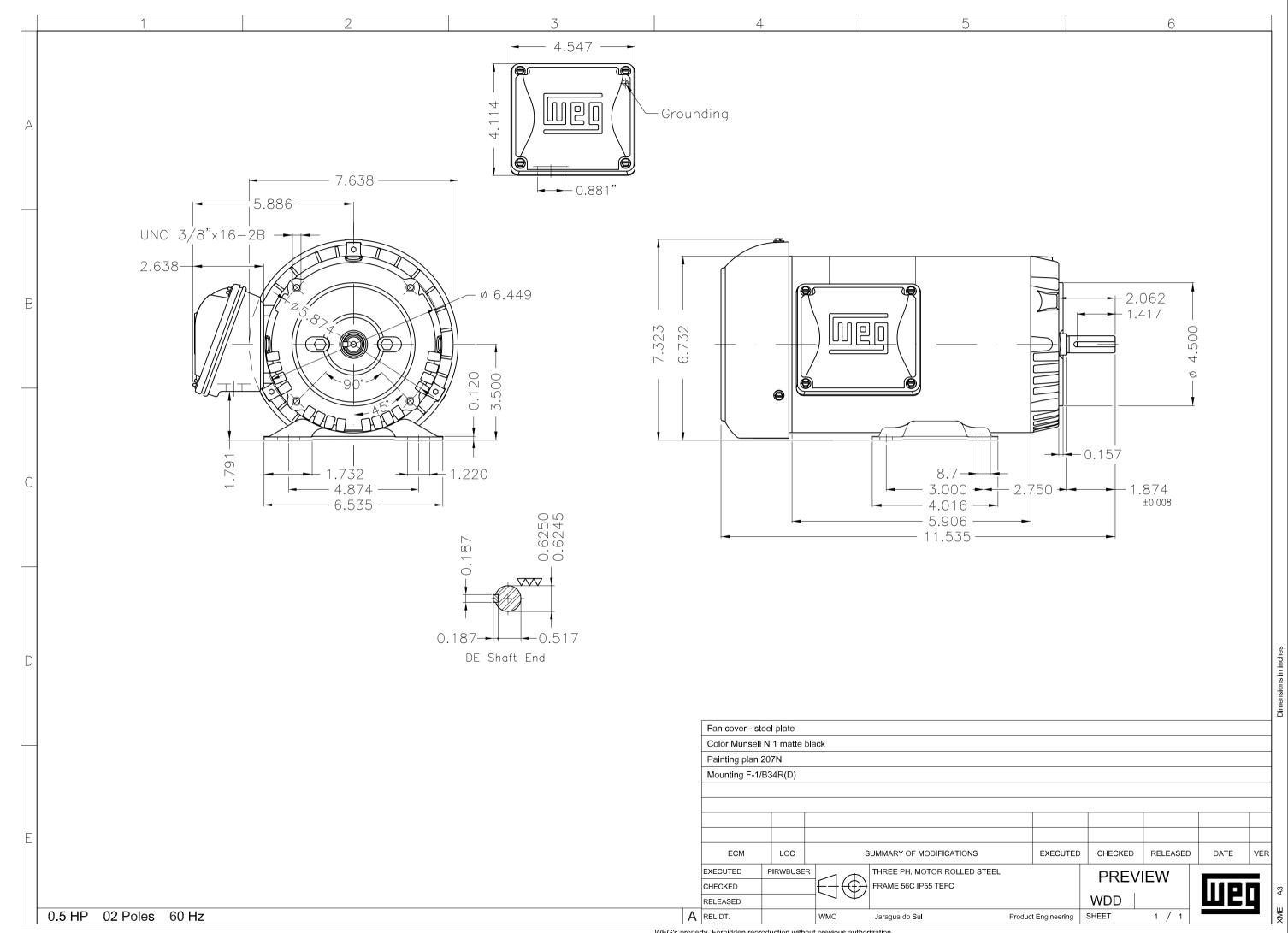
:

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

VFD OPERATION CURVE


:

Three Phase Induction Motor - Squirrel Cage

Customer

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization of WEG S/A.

WEG's property. Forbidden reproduction without previous authorization.

MAT: 14797643 W01.TE0IC0X0X MODE1 5036E3H56

MADE IN MÉXICO

MODEL .5036ES3H56C-S

Class I, DIv.2, Gr. A,B,C,D - T3 DIv 2 Inverter Duty (SF1.00)

For 60Hz: Class I, Zone 2, IIC

06DE	06DEC2021 E	B/N:	CT 2:1/VT 1000:1
Ηd	3	Hz 60	HP 0.50
БŖ	56C		kW 0.37
PUTY	DUTY CONT.		V 575
ALT	1000 m.a.s.		A 0.674
INS CL	INS CL F AT 80K	IP55	SFA 0.775
AMB	40°C	DES -	SF 1.15
ENCL	TEFC	CODE L	PT 0.01
			NEMA 5000 NOM.EFF 68.0%
Ľ.	or safe area	-Inverter duty n	For safe area-inverter duty motor For use on VPWM 1000:1 VT, 10:1 CT
DE 6203-ZZ		ODE 6202-22	MOBIL POLYREX EM

NTERCHANGE ANY TWO LINE WIRES TO REVERSE THE ROTATION

chocks. Disconnect power source before servicing unit. NARNING: Motor must be grounded in accordance with local ind national electrical codes to prevent serious electrical

choc électrique grave. Déconnectez l'alimentation avant l'entrefien de la machine conformément aux codes électriques locaux et nationaux ann d'éviter tout AVERTISSEMENT: Le moteur doit être mis à la terre